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Chapter 1. Introduction 

Reliability, affordability, timeliness and location are four major concerns in many 

practical communication systems. Today, the development trends in telecommunications are 

driven by the high market demands for advanced wireless communications, which include 

access to a diverse range of services for anyone, anywhere, anytime and at the lowest 

possible cost. In late 1999, the International Telecommunications Union (ITU) approved five 

IMT-2000 ( International Mobile Telecommunications for the 2 1^ century) terrestrial radio 

interfaces which indicates the arrival of the third generation (3G) of wireless technology. The 

mobile communication systems are now migrating from the second generation (GSM, IS-54, 

IS-95, etc) to the IMT-2000 vision (i.e. UMTS). Wideband Code Division Multiple Access 

(WCDMA) is one of the major new third generation mobile communication systems being 

developed within the IMT-2000 framework. Such systems operate in low-power 

environments as well as time-varying, multiuser environments in which the exact structure of 

the channel is difficult to determine precisely. We refer to this environment genetically as the 

mobile wireless channel, and it serves as a primary motivation for this research. 

In this introductory chapter, we first describe in an intuitive way several of the 

principal types of interference that corrupt WCDMA channels. These include multiple-access 

interference (MAI), multipath propagation, intersymbol interference (ISI), narrowband 

interference, and additive wideband channel noise. In addition, the problem of channel 

uncertainty is particularly addressed. Once these problems are described, the dissertation 

objective and approach to solving these problems are then discussed. 
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1.1 Problem Description 

In this investigation, our research effort is focused on the design and analysis of low-

complexity, adaptive wireless receivers and signal constellations that exhibit good 

performance characteristics in the presence of multiple sources of complex structured 

interference as well as significant uncertainty regarding the exact structure of that 

interference. We refer to receivers that offer superior performance in the presence of 

uncertainty regarding the exact structure of the channel as robust receivers. We consider 

problems primarily related to the code-division-multiple-access (CDMA) environment. In 

particular, we study robust adaptive receivers for CDMA channels corrupted by the 

cumulative effects of multiple-access interference (MAI), multipath propagation, intersymbol 

interference (ISI), narrowband interference (NBI), and additive wideband channel noise. The 

work is motivated by the utility and popularity of CDMA as a means for implementation of 

IMT-2000/UMTS and by the ubiquitous nature of all of these sources of interference in such 

systems. In addition, because many tactical and commercial wireless networks operate in a 

mobile environment in which channel parameters vary rapidly over time, it is often difficult 

or impossible to estimate channel characteristics accurately. Hence, it is often necessary to 

implement a receiver in a heavily cluttered environment characterized by a high level of 

uncertainty. 

Inherent to every communication system is a channel that links the transmitter and 

receiver. As we demonstrate later in this dissertation, we can describe the uncertain CDMA 

fading channel analytically with a simple discrete-time model: 

/=0 t-Q 
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where rm represents the received signal for the user of interest (user 0), represents the 

sequence of transmitted symbols for user 0, the sequence {à,}^_0 represents known estimated 

values of the discrete-time channel impulse-response sequence for user 0, the sequence 

{c,}'=0 represents the uncertainty (unknown errors) in the estimates of the impulse-response 

sequence, and ym represents an additive noise vector including the effects of MAI, NBI, and 

additive white Gaussian noise(AWGN). Hence, we now have a model in which the effects of 

MAI, NBI and wideband noise are modeled by the additive interference term {ym} ; the ISI 

and multipath are modeled together by the known multiplicative interference terms ; 

and the channel uncertainty (including timing and waveform mismatches in the underlying 

chip-matched filter) is modeled by the separate random multiplicative interference terms 

MIL-

The research work will concentrate on baseband discrete-time (i.e., digital) receivers. 

Furthermore, since we are primarily interested in low-complexity decision strategies that can 

be implemented in small, low-power receivers, we will restrict our discussion to one-shot, 

single-user receivers. That is, we assume that we are interested in demodulating only the 

symbol sequence transmitted by a single user and that symbols will be demodulated one at a 

time. 

In contrast to previous studies, which have concentrated primarily on receiver design 

for a single type of interference under known channel assumptions, this research effort seeks 

to identify and analyze receivers that are not only nearly optimal in the presence of multiple 

sources of interference but also robust in the presence of channel uncertainty. The following 

problems are considered. 

1. Receivers are designed based on the probabilistic channel model described above 

that explicitly incorporates multiple sources of additive interference as well as a stochastic 

structure for the channel uncertainty. We consider a simple, intuitively appealing cost 
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function that can be maximized to find linear-quadratic (LQ) detectors that are optimal in a 

certain sense. An adaptive algorithm is derived for LQ detectors that can be viewed as a 

generalization of the minimum-output-energy algorithm for the MMSE linear detector. 

2. Adaptive multicoding - an approach to adaptive modulation for time-varying 

channels based on the proposed LQ cost function is also studied. 

3. The Chemoff bound is derived for the performance analysis of LQ receivers. 

4. The problem of binary signaling is considered first, and an extension from binary 

signals to M-ary signal constellations is developed in a multi-dimensional setting in order to 

achieve higher data rate transmission. 

1.2 Dissertation Organization 

The organization of this dissertation is as follows. 

Historical Review Chapter 2 provides a brief literature review of the problems 

considered in this dissertation. Optimal receivers and suboptimal receivers and the trade-off 

between them are discussed. The uncertainty of fading channels has been recognized and 

addressed in several pertinent papers. Similarly adaptive modulation techniques have been 

studied previously for fading channels by several investigators. 

Communication System Model Chapter 3 defines a generic CDMA communication 

system model for fading channels, and an equivalent discrete-time model that explicitly 

incorporates multiple sources of additive interference and channel uncertainty is rigorously 

developed. For simplicity of analysis, we restate the model using vector notation and make 

some necessary assumptions. 

Adaptive LQ Receivers Chapter 4 motivates and derives the proposed LQ receivers. 

A simple, intuitively appealing cost function, the modified deflection ratio, is proposed. We 
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discuss the properties of the proposed LQ cost function and derive a related adaptive 

algorithm to find the optimal LQ receivers. 

Adaptive Multicoding Chapter 5 first introduces the J-divergence as a relevant cost 

function for receiver and constellation design. Then a novel adaptive modulation scheme 

based on the J-divergence is developed to find the best signal constellation and receiver pair. 

Simulation work for binary signals is described in this chapter, and preliminary performance 

evaluation is also conducted here. 

Performance Analysis of LQ Receivers Chapter 6 derives the Chemoff bound for 

LQ receivers to estimate the probability of bit error. To validate the simulations, the 

simulated BER of LQ receivers is compared with the Chemoff bound and other bounds. 

M-ary Signal Constellations Chapter 7 extends the results of Chapter 4 and Chapter 

5 to M-ary signal constellations. Simulation work is presented and results are analyzed. In 

addition, the information theory perspective on signal dimension expansion is also addressed 

in this chapter. 

Summary and Conclusions Chapter 8 summarizes the primary results of our 

theoretical analysis and simulation work. We provide a synopsis of the unique contributions 

of this dissertation and discuss some future investigations based on the results presented here. 
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Chapter 2. Historical Review 

Literature review in the relevant fields is critical for any sizeable research effort. By 

performing such a historical survey, we can understand the techniques employed by other 

investigators in similar fields as well as the applications driving similar research activities. 

In this chapter, we provide a brief review of selected references in the major area of 

this research - interference suppression, channel uncertainty and adaptive modulation 

techniques. 

2.1 Interference Suppression 

Interference suppression techniques have been studied individually by many different 

investigators over decades. Various methods have been developed in order to solve the 

problems caused by MAI, ISI, NBI, and multipath propagation on CDMA channels. 

MAI is perhaps the most extensively studied type of interference. The first optimum 

multiuser detector was developed by S. Verdu in 1983 [1]. After that, the analysis and 

derivation of optimum multiuser detectors was carried out in [2-4]. For example, the 

structure of the optimal maximum-likelihood sequence detector for an asynchronous 

Gaussian multiple-access CDMA channel was studied in [4]. Generally, the optimum 

receiver is defined as the receiver that selects the most probable sequence of bits given the 

received signal observed over the time interval. Among other virtues, as long as the set of 

signature waveform is linearly independent, the optimal detector solves the critical near-far 

problem for multi-user detection, in which the signals of distant or otherwise weaker users 

are overwhelmed by the signals of stronger users, even when the system is synchronized and 
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the signals of the users are nearly mutually orthogonal. Unfortunately, the optimal detectors 

not only requires knowledge of the waveforms of all users but also involves an order of 

computational complexity that is exponential in the number of users. 

In fact, Verdu's optimum receiver uses the Viterbi algorithm for ML sequence 

estimation. As explained in [5], optimum multiuser demodulation is equivalent to a shortest-

path problem in a layered directed graph. Therefore, a suboptimum version of the forward 

dynamic programming algorithm is adopted in practice, whereby each decision is based on 

the path corresponding to the cost-to-arrive function computed a fixed number of steps 

ahead. Thus, a significant reduction in computational complexity is obtained with respect to 

the block size parameter, but the exponential dependence on the number of users cannot be 

reduced. It is obvious that its application in practice is limited to communication systems 

where there only allow a small number of users. 

Due to the complexity of the optimal m ultiuser d elector, it is impractical in many 

real-time situations. As alternatives, suboptimal linear detectors for the same channel have 

been extensively studied by many investigators [6-9]. For example, linear multiuser detectors 

for synchronous CDMA channels are studied in [7]. Even though these linear detectors do 

exhibit higher probability of error than the optimal detector, they display the same near-far 

resistance as the optimal detector [10]. This implies that linear detectors still offer a solution 

to the near-far problem. 

Among the class of linear multi-user detectors, perhaps the most interested one is the 

minimum-mean-squared-error (MMSE) delector [6, 11]. This detector is not only near-far 

resistant, but also can be implemented adaptively in a straightforward manner without 

recourse to training sequences [9,11] in some cases. Furthermore, the structure of the MMSE 

detector depends only on the crosscovariance structure between the true bit sequence of the 

desired user and the received symbol sequence as well as the autocovariance structure of the 
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received symbol sequence. Therefore, no matter whatever complex structured interference is 

actually present, only the crosscovariance and autocovariance structure need to be adaptively 

estimated from the data to implement a detector that coherently compensates for that 

inference. On this perspective, the adaptive MMSE detector is itself a robust detector. 

There are also several suboptimal nonlinear multi-user detectors that have been 

studied in last decade. Within this category, there are decision feedback detectors [13-15], 

Multistage detectors [16], successive interference cancellation [17], and detectors based on 

neural-network architectures [18-20], These detectors are also near-far resistant and offer 

performance advantages over linear detectors in some situations. But usually they are more 

difficult to implement than linear detectors. However, they are still far less complex than the 

optimal multi-user detectors in many cases. 

Similarly, the NBI suppression techniques on CDMA channels have been extensively 

studied. The traditional solution to this problem of NBI suppression is provided in [22-24]. 

First, it filters the incoming symbol sequence with a linear transversal filter. This filter 

estimates the narrowband process and subtracts the estimate from the received symbol 

sequence. Then the output from the filter is correlated with the spreading sequence of the 

user. At the end, compare the result to a threshold to make a bit decision. A refinement of 

this technique [25-27] uses a nonlinear transversal filter. The narrowband component is 

estimated by applying a linear transversal filter to the received signal minus a nonlinear 

estimate of the transmitted symbol sequence. 

In g eneral, the problems of multipath interference and ISI o n CDMA c hannels are 

studied separately. That is, multipath interference generally causes both signal fading and 

ISI, but most research has focused on one or the other. In particular, a great deal of work has 

been done on designing multiuser receivers that exploit signal diversity to combat fading. 

Many different investigators have studied variations of the so-called RAKE receiver, which 
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exploits the frequency diversity present in CDMA signals [28-33]. In addition, array-

processing techniques have been applied to the problem of multiuser detection on multipath 

CDMA channels to exploit the spatial diversity available at the receiver [34-38]. For 

channels with fast-fading characteristics such as mobile CDMA channels or spread-signature 

CDMA channels, some very interesting work has been done on employing time-frequency 

techniques to design receivers that exploit both time and frequency diversity [39-41], 

With respect to ISI, it is well known that as long as the bit sequence of all users can 

be treated as mutually independent streams of independent and equally likely random 

variables, ISI can be modeled as equivalent to additional MAI. Hence, the optimal detector 

for ISI on a multiuser channel is fundamentally similar to the optimum multiuser detector 

without ISI. In the same way, linear multiuser detectors and nonlinear techniques such as 

decision feedback, multistage detection, and successive interference cancellation can be 

modified to mitigate both ISI and MAI simultaneously at higher complexity. However, in 

practical applications in which low complexity is crucial, suboptimum receivers remain an 

open problem. It is of interest to note that a Bayesian approach similar to the one proposed in 

this dissertation as a means of dealing with channel uncertainty has also been considered in 

the context of adaptive channel deconvolution for ISI channels [42, 43]. The success of 

Bayesian t echniques for problems so closely related to the one of interest here is another 

indication of the potential benefits of this work. 

2.2 Channel Uncertainty 

In many of the aforementioned references, the analysis assumed exact knowledge of 

channel parameters. However, in many communication situations, the transmitter and the 

receiver must be designed without complete knowledge of the channel over which 
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transmission takes place. In mobile wireless communications, the time-variation of the 

channel caused by the varying location of the mobile transmitter and receiver with respect to 

scatterers leads to an uncertain channel. 

Information-theoretic research efforts on uncertain channels have produced classes of 

models to describe many situations arising in mobile wireless communications. Many 

investigators have studied reliable communications under channel uncertainty from the 

information-theoretic perspective. For example, the extent to which dimension and geometry 

of the signal constellation can be exploited to mitigate the loss in capacity caused by channel 

uncertainty on wideband spread-spectrum fading channels has been studied in [44]. Universal 

decoding has been studied in [46] for Gaussian channels with a deterministic but unknown 

parameteric interference. In [47], the mismatch problem with minimum Euclidean distance 

decoding has been studied. For multiple-access channels, universal decoding has been 

studied in [48, 49], and mismatched decoding has been studied in [50,51]. 

In comparison to the amount of work that has been done on interference suppression, 

the issue of sensitivity of receiver performance to errors in the estimates of relevant channel 

parameters in multi-user systems has been studied relatively little. Problems associated with 

tracking errors, such as phase or timing mismatches, have been studied in [52-55] and 

sensitivity to estimates of fading parameters have been studied in [56-60]. For example, in 

[59], the variance of the channel measurement error at receiver impacts the channel capacity. 

Similarly, i n [ 60], the e fleet ofc hannel e stimation e rror on M -QAM s ystems i n R ayleigh 

fading channels is studied. More recently there has been some interest in the application of 

classical techniques from the field of robust statistics to the design and analysis of multiuser 

receivers for CDMA systems. For example, in [61], censoring of data in the frequency 

domain was used to reduce the sensitivity of detector performance to unknown narrowband 

interference. Also, in [62, 63], McKellips and Verdu study the characterization and impact of 
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uncertain noise distribution and worst-case additive noise distribution with respect to 

maximum probability of error under power and divergence constraints. 

2.3 Adaptive Modulation Techniques 

Communications systems are designed to deliver information as fast as possible, 

consume power as low as possible and cause error as few as possible. Typically, the goal of 

an adaptive modulation scheme on a communication channel is related to one of the 

following: 

1. Minimize the transmitted power subject to constraints on the throughput and BER. 

2. Minimize the BER subject to constraints on the throughput and transmitted power. 

3. Maximize the throughput on the channel subject to constraints on the transmitted 

power and the BER. 

Adaptive modulation techniques that address the trade-off of channel throughput, 

transmitted power and the bit error rate (BER) have been studied by many different 

investigators. Of particular interest here are techniques designed to combat the effects of 

channel fading, such as those studied in [64-70]. For example, in [70], the signal 

constellation is chosen from a discrete set of possibilities with fixed average power in order 

to maintain a constant BER with a high data rate (large constellation size) when the channel 

is favorable (shallow fade) and a low data rate (small constellation size) when the channel is 

unfavorable (deep fade). Similarly, in [65], both the constellation size and the transmitted 

power are varied to maintain constant BER and constant average transmitted power but 

maximize the data rate for any particular channel state. In [69], the throughput gain is 

achieved by combining adaptive modulation and power control for variable rate 

communications in multiuser environment. 
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To enhance the performance of the LQ receivers, we investigate adaptive modulation 

design in parallel with adaptive receiver design. In this dissertation, we use the term adaptive 

modulation to refer to techniques that alter the size or shape of the signal constellation in 

response to characteristics o f the transmission environment. In p articular, we adopt M-ary 

quadrature amplitude modulation (MQAM) as the basic signaling format and consider 

techniques t o d etermine a daptively the n umber Mo f s ymbols in the constellation and the 

coordinates of each symbol with respect to a known set of basis signals. Although we 

propose it in this investigation to provide robustness against channel uncertainty, the notion 

of multicoding or assigning multiple spreading codes to each user has been proposed 

previously for use on multirate CDMA systems [71-74], where it provides a simple 

mechanism for accommodating users with different data rates. For example, in [73], the 

appropriate number of spreading codes is dynamically assigned to each user in order to meet 

its throughput requirement for multiuser multimedia services via mobile radio channel. Note 

that, in principle, our definition of adaptive modulation encompasses adaptive power control 

as well since the average transmitted power of the signaling scheme is one of the parameters 

determined b y the c oordinates o f the s ignal constellation. A lso note that we are p rimarily 

concerned with uncoded modulation schemes in this investigation. 
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Chapter 3. Communication System Model 

Having heuristically described the problem and briefly reviewed the relevant 

literature, our focus now shifts to a rigorous formulation of the problem of interest. 

In this chapter, we first introduce a typical CDMA communication system model in a 

mobile wireless channel. Next, an equivalent discrete-time model is defined and validated for 

our particular problem. Finally, in order to make the model tractable, we enumerate some 

reasonable research assumptions. 

3.1 CDMA System Model 

It is shown in many different communication texts (see, for example [28]) that a 

fading channel such as the mobile wireless channel can be modeled mathematically as a 

time-varying linear filter. Such a filter is characterized by a time-varying channel impulse 

response c(r;t), where c(r;/) is the response of the channel at time t due to an impulse 

applied at time t- r, where r represents the time delay variable. Therefore, a mobile 

wireless channel with additive interference can be illustrated as in Figure 3.1. 

</) 

m 

Figure 3.1 Mobile Wireless Channel with Additive Interference 
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For an input signal s(f), the channel output signal is 

= ^c(r,t)s(t-T)dr + i(t)  ^  ̂  

Where i( t)  represents all additive interference including MAI, NBI and AWGN. 

If the channel is a multipath channel, the time-varying impulse response has a special 

form 

c(r;') = £«,(0<5(r-r,) (3.2) 
/=• 

Where the {a,(t)} represents the attenuation factors for the L propagation paths and { T , }  are 

the corresponding time delays. If (3.2) is substituted into (3.1), the received signal has the 

form 

r(0 = 2«,(/)s(f-r,)+z(0 (3.3) 
/=i 

Therefore, the received signal consists of L multipath components, where each component is 

attenuated by {cc,(t)} and delayed by {r;}. 

Due to bandwidth constraints, the mathematical model described above generally 

characterizes the mobile wireless channel. In order to design and analyze a robust receiver 

for this channel, in the next section, we will rigorously develop an equivalent discrete-time 

model that explicitly incorporates channel uncertainty. 
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3.2 Discrete-Time Model 

The principal goal of this aspect of the research effort is the design and analysis of 

CDMA receivers that perform well in the presence of significant interference as well as 

substantial uncertainty regarding the structure of the channel. We propose a novel Bayesian 

approach to this problem in which receivers are designed based on a probabilistic channel 

model that explicitly incorporates a stochastic structure for the channel uncertainty. Although 

the ideas developed in this proposal can be extended quite easily to other types of CDMA 

modulation, particularly differentially encoded CDMA waveforms, we will confine our 

discussion to direct-sequence CDMA systems. We assume initially that information is 

transmitted using binary (but not necessarily antipodal) direct-sequence CDMA modulation. 

Since we will be concerned primarily with noncoherent systems, we adopt a complex-valued 

baseband model for the signal. That is, we assume that the transmitted baseband signal for 

the user of interest (user 0) takes the form 

= . (3.4) 
i =—x (=0 

where P is the average power of user 0, N is the length of the chip sequence, Tc = T/N is the 

length of the chip interval, bk e {0,1} represents the transmitted value of bit k for user 0, <//(/) 

is a chip waveform of duration Ta, t is the relative delay for user 0, 0 is the relative phase of 

user 0, and cj4 is the Zth component of the user's chip sequence cy corresponding to a 

transmitted bit value of /e{0,T}. Without loss of generality, we assume that 9=0 and T = 0. 

We also assume that the chip sequences c0 and c, are known to the receiver. Note that the 

choice of c0 =-c, corresponds to an antipodal binary signaling structure, while choosing c0 

and c, to be orthogonal spreading sequences corresponds to an orthogonal signaling 

structure. 
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To highlight the most salient features of the proposed research, we will confine our 

discussion to a simple discrete-time model for the channel. This is equivalent, for example, to 

the assumption that the receiver demodulates the received baseband signal r(t) into a 

sequence of symbols using a noncoherent chip-matched filter. The received symbol 

vector corresponding to a single detection interval can then be modeled as [99] : 

< L 
rm = X Z1"t (Z' m) S".n>-I +"„+ fm , (3 -5) 

*=0 /=0 

where {stm} represents the sequence of transmitted symbols for user k, where {rjm} is a 

stationary, zero-mean broadband noise sequence; {vm} is a zero-mean, stationary 

narrowband process; K represents the number of interfering users; and the coefficients 

{ak(0,m),ak(l,m),...,ak(L,m)} represent the time-varying impulse-response sequence of 

the discrete-time channel at time m for the transmission of user k. Note that we have made 

the assumption that the number of interfering symbols for each user is bounded by L, which 

is assumed to be a fixed upper bound on the length of the discrete-time impulse response of 

the channel for all users. 

To account for the uncertainty in the values of the channel parameters relevant to user 

0, we rewrite the sequence {rm} as follows: 

L L 
'm = Z â0JS0.m-t + X £0JS0,m-l +Çm+Vm+Vm> (3 6) 

;=o r=o 

where the sequence {Çm} represents the cumulative effects of all of the multiple-access 

interference, the sequence {à0l)L
[ 0 represents the estimated values of the discrete-time 

channel impulse-response sequence for user 0, and the sequence {^o/}^L0 ^presents the 

uncertainty (errors) in the estimates of the impulse-response sequence. Note that we have 
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suppressed the dependence on observation time m for the sequences {â0j}^Q and {5,,/}' 0 • 

This is equivalent to the assumption that the true structure of the channel is essentially 

constant over periods of time at least as long as a single detection interval, and the estimates 

of the channel impulse response are provided as side information updated no more frequently 

than once per detection interval. 

Hence, we now have a model in which the effects of MAI, NBl, and broadband noise 

are modeled by the additive interference terms {Çm}, {vm}, and {//„,}, respectively; the IS I 

and multipath are modeled together by the known multiplicative interference terms|â0 /|'o; 

and the channel uncertainty (including timing and waveform mismatches in the underlying 

chip-matched filter) is modeled by the separate random multiplicative interference terms 

{fib./}'0> We will assume that the various random interference sequences in this model all 

have mean zero and are independent of each other as well as the data sequence. 

Now, because we are interested in one-shot detectors, we consider an observation 

vector x(n) of lengthA r+£( for example) with components *,(«)= r / l i V + , ,  for 0 <i< N + L- l .  

Reverting entirely to vector notation and dropping the explicit dependence on the bit interval 

n, we see that the observation vector x can be written in the form 

x = Sâ + Se + i + Ç + v + q, (3.7) 

where S is an (A/>L)x(z. + i) matrix, à and e are vectors of length L+1, and i, Ç, v,  and r\ 

are vectors of length N+L. Vectors à, s, t, Ç, v, and t\ represent estimated channel impulse 

response, channel estimation errors, intersymbol interference (ISI), multiple access 

interference(MAI), narrowband interference(NBI) and additive wideband noise respectively. 

Notice that the distribution of the random vector x is influenced by the data bits from the 

user of interest only through the matrix S. Furthermore, the matrix s is completely 
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determined by the known signature sequences c0, c, and the current transmitted bit value for 

user 0. In particular, assuming only a single bit of ISI, the matrix Scan be written as 

S = 6_,C_, + bQCQ +b^C+l, where b_x, b0, 6+I represent the previous bit, current bit, and next 

bit, respectively and C_,,C0,C+1 are given by 

"0..V-I 
0 
0 
0 
0 

u0..V-2 
u0..V-l 

0 
0 
0 

'-O.M-L 

u0.,V-2 

O.iV-1 
0 

0 

. Co = 

0,0 

"0,1 

u0..v-l 

0 

-o.o 

"o.l 

u0,AM 
0 0 

0 0 

0 
0 

C0,0 
C0.l 

u0..V-l 

' C.I - u0.0 

"0 ,i-2 

0 
0 

c0,0 

C0.i-l C0,L-2 

0 
0 
0 
0 

C0.0 

To simplify the model a bit further, we can combine all of the additive interference into one 

vector y • That is, let 

Y = Ç + v + q (3.8) 

represent the cumulative effects of all of the additive interference - i.e., multiple-access 

interference (MAI), narrowband interference (NBl), and additive white Gaussian noise 

(AWGN). Then (3.7) becomes 

x = Sd + Se + i + Y (3.9) 

To complete the channel model, we make the simplifying (and generally reasonable) 

assumptions that d, e, i, f are mutually uncorrected, wide-sense stationary random 

vectors, and that E has mean zero. 



www.manaraa.com

19 

3.3 Research Assumptions 

In order to facilitate design and analysis of Bayesian receivers, we will consider the 

following set of nominal conditions and some reasonable assumptions: 

1. The error vector e can be treated as a zero-mean Gaussian random vector with 

covariance matrix . In many cases, if the channel impulse-response vector â is estimated 

adaptively, this is a standard assumption for the error vector e. As an alternative, e can be 

regarded as a Rayleigh fading component, and d as the mean value of the multipath 

interference on a fading channel. This model for the channel estimation errors has been 

employed in prior work [56, 57, 75] using Kalman filters. 

2. The vector i| is a zero-mean additive white Gaussian noise (AWGN) vector with 

covariance matrix <r2I. This is also a standard assumption that is representative of a wide 

range of natural phenomena. The broadband background noise is often treated as AWGN. 

3. The NBl vector visa zero-mean Gaussian random vector with covariance matrix 

£v. This implies that the AWGN and the NBl can be combined into a single Gaussian 

random vector with mean zero and covariance matrix £r +<r2I. Even though NBl has some 

non-Gaussian behavior, in general, when attempting to design improved NBl suppression 

techniques [25, 27, 61], it is the non-Gaussian structure of the CDMA signals themselves 

rather than the non-Gaussian behavior of the NBl that is modeled. 

4. The MAI is caused by a number of weaker users that can be accurately modeled as 

a zero-mean Gaussian process with covariance matrix , together with a few dominant users 

with arbitrary power. In this scenario, the aggregate additive noise vector y (MAI, NBl, and 

AWGN) is properly characterized as a uniform mixture of independent Gaussian 

distributions with different means and possibly different covariance matrices. 

First, consider the case when there are several interfering users with independent but 

identical behavior (including multipath effects) at the receiver. In this situation, assuming 
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that the data bits for all users are mutually independent, the central limit theorem can be 

employed to imply that the MAI vector itself should be roughly Gaussian. Based on this 

implication, a Gaussian model for a component of the MAI is a reasonable nominal 

assumption and is frequently adopted [76-78], Moreover, it is straightforward to show that 

on a CDMA channel with antipodal modulation where the MAI and AWGN are the only 

sources of interference, treating the MAI as Gaussian with the appropriate covariance matrix 

leads directly to an optimal detector that is equivalent to the conventional MMSE linear 

detector. Since the MMSE detector is known to be a robust detector in the presence of heavy 

MAI, it can be argued that the assumption of Gaussian MAI with the appropriate covariance 

structure is a good starting point for designing robust detectors. Similarly, it has been shown 

in [21] in most cases that the maximum divergence between an appropriate Gaussian 

distribution and the MAI-plus-noise component at the output of the linear stage of an MMSE 

detector is quite small. 

On the other hand, if there are only a few interfering users on a channel with fixed 

multipath structure, the distribution of the sum of MAI, NBl, and AWGN, given any 

particular realization of data bits for the interfering users, is conditionally Gaussian. If we 

assume again that the data bits for all users are mutually independent, the distribution of the 

aggregate noise will then be a uniform mixture of Gaussian distributions with different 

means. As a matter of fact, ignoring all interference except MAI and AWGN, and 

accounting for all users in this manner leads to the true optimal one-shot detector [20]; 

however, this detector is again exponentially complex in the number of users. 

Combining these two arguments, we can conclude that the additive noise component 

on a slowly fading channel where the MAI is generated by a relatively large number of 

homogeneous weak interfering users together with a few dominant interfering users, can be 

modeled as a uniform mixture of Gaussian distributions with different means but the same 
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covariance matrix. In a similar way, a uniform mixture of Gaussian distributions with 

different means and different covariance matrices turns to be the model for fast-fading 

channels. This latter case is equivalent to modeling the channel impulse response for each 

strong interfering user as an estimated component plus a zero-mean error component, just as 

we did explicitly for user 0. Hence, using a model that allows different covariance matrices 

for each component of the mixture distribution corresponding to the additive noise is 

equivalent to explicitly modeling the uncertainty in the multipath characteristics for each of 

the dominant interfering users. 
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The discrete-time model defined in Chapter 3 sets the foundation of the 

communication architecture under investigation. The structure of this channel model 

incorporates explicitly all significant types of interference as well as substantial channel 

uncertainty. In addition, some reasonable assumptions have been made to facilitate further 

design and analysis. 

In t his c hapter, we d esign robust r eceivers b ased on thee hannel m odel d e fined i n 

Chapter 3. First, the statistics for a binary hypothesis testing problem are derived and 

discussed. Then, adaptive LQ receivers are proposed in order to exploit both the known CSI 

and the structure of the channel uncertainty. Next, we proposed a simple, intuitively 

appealing cost function that can be maximized to find LQ receivers that are optimal in a 

certain sense. At the end of this chapter, we discuss the properties of the proposed LQ cost 

function and derive a related adaptive algorithm. 

4.1 LQ Receivers 

Our task in this investigation is to design the robust one-shot, single-user detector 

based on the channel model developed in Chapter 3. This kind of detector can be 

implemented as a generalized radial-basis-function (RBF) neural network with Gaussian 

processing nodes. With only moderate increase in complexity, such detectors can be expected 

to offer increased robustness and performance improvements comparing to linear detectors. 

In [19], Mitra and Poor have studied adaptive multi-user detectors of this type that 

demonstrated some robustness properties. These detectors will be less complex to implement 
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than the true optimal multiuser or single-user detectors. Such detectors for use on ISI 

channels have also been studied by Barton, Shaw and Reichart in [80]. They investigated the 

sensitivity of different processing architectures to mismatches in detector complexity. As 

results, they found that if implementation considerations require that detector complexity be 

severely constrained or the required complexity of the optimal detector is severely 

underestimated, superior performance could be achieved by a nonoptimal detector 

architecture. On the other hand, as complexity constraints are relaxed or optimal detector 

complexity is more accurately estimated, the performance of the suboptimal architecture 

improves very little but the performance of the optimal architecture improves rapidly. If we 

recall the essential equivalence between ISI and MAI, we see that these results have 

implications for multi-user receivers as well. 

One approach to reducing the complexity of these receivers while still retaining some 

of the performance advantages is to constrain the number of processing nodes in the detector 

as much as possible. In the extreme, this results in a detector with only two Gaussian 

processing nodes. This is equivalent to assuming that the aggregate additive interference is 

Gaussian and corresponds to the following simple binary hypothesis testing problem [100]: 

H0:x~ N(n0,E0), 
Versus (a) 

Ht :x-N(p,,Z,). 

where 

f*0 =C„« 
|i, =C,d 

20 
=C0£eC0 + E, 
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It is straightforward to show that the difference in the covariance matrices under the 

two hypotheses results entirely from the inclusion of the modeled estimation error term e. 

That is, in the absence of any modeled error term, Problem (a) reduces to 

H0 :x-N(|s0,L), 
versus (b) 

H{ :x-N(|ip£). 

Furthermore, if we assume antipodal CDMA modulation (C0 = -C, ), then problem (b) 

reduces to 

Ha :x-M(-ji,r), 
versus (b') 

H, :x-N(n,l). 

where 

fi = C,d 

It is well known that the optimal detector for Problem (b') is equivalent to the MMSE linear 

receiver for the single-user detection problem on antipodally modulated, frequency-selective 

CDMA fading channels. On such channels, the MMSE detector is known to be a robust 

suboptimal solution to the detection problem that can be implemented in an adaptive fashion 

provided that the channel is slowly time varying. This suggests that it is worthwhile to 

investigate optimal solutions to Problem (a) as robust adaptive suboptimal detectors for 

rapidly time-varying channels or other situations in which good estimates of the channel 

parameters are not available. 
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Towards this end, we note that if the channel is stationary and ergodic (at least over 

reasonably long time intervals), Problem (a) can be readily transformed in a blind adaptive 

fashion into the slightly more tractable form 

Ho :y~N(-n,E0), 
versus (a') 

Hx :y-N(p,Z,). 

where p is known. Since the observation vector x and the estimated CSI vector d are both 

known to the receiver, it is a simple matter to compute estimates n, and p. of the 

corresponding mean vectors in an adaptive fashion. Assuming these estimates are unbiased, 

we can transform the observation vector x into a zero-mean observation vector y using the 

transformation 

Y = *-P, -i(Co +C,)(â-p.), (4.1) 

where the ( N  +  L ) x ( L  + 1) matrices Co and C, are defined straightforwardly in terms of the 

known spreading sequences c0 and c,. The new observation vector then takes the form 

y=Hb + %, where b e{-l, + l} now represents the transmitted bit value, p = y(C, -C0)â 

represents a constant transmitted baseband "signal", and 

Ç =i6(C, -C0)e + f(C, + C0)e + î + y, (4.2) 

represents zero-mean additive channel noise. Note, that the ISI and additive interference 

vectors i and y have been replaced with their zero-mean counterparts ï and y. 

Conceptually then, we have transformed the original detection problem into a more 

conventional antipodal binary detection problem, which is convenient for expository 
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purposes. Furthermore, given the transmitted bit value b and the estimated CSI vector d, the 

observation vector y has conditional mean vector 

where Z, represents the covariance matrix of the channel uncertainty vector s, LT 

represents the covariance matrix of the additive interference vector y , and £, represents the 

covariance matrix of the ISI vector i. Note that the matrix E, also has a known form that is 

completely determined by c0, c,, £t, and Z-, the covariance matrix of the observed 

estimated CSI vector d . (see Appendix C). 

Equations (4.3) and (4.4) reveal several interesting properties related to the second-

order statistics of the observation vector y. First, in the absence of instantaneous CSI 

estimates (d=0, i.e., completely noncoherent detection), the conditional mean vectors under 

the binary hypotheses #o: 6 = -l and H\-.b = + \ are identical. Hence, the only second-order 

information that can be exploited by the receiver to discriminate between the two hypotheses 

is the difference in the conditional covariance matrices. On the other hand, if some CSI is 

available (d*0, i.e., partially or completely coherent detection), then the conditional mean 

vectors will differ as long as the signal structure under the two hypotheses is not identical 

(c, #c„). The availability of CSI can obviously be exploited at the receiver by including a 

linear component in the detector, and the processing gain associated with the linear detector 

component will be maximized if the signals are antipodal (c, =-c0). 

IV™ =|i6=y6(Cl -C0)d, (4.3) 

and conditional covariance matrix 

(4.4) 
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Similarly, the conditional covariance matrices of y under the two hypotheses Ho and 

H\ differ only due to the influence of the terms Cy£eCv', y = 0,l. This implies that if the CSI 

is known precisely (e = 0, i.e., completely coherent detection), then the covariance matrices 

under the two hypotheses will be identical and the only second-order information that can be 

exploited by the receiver to discriminate between the two hypotheses is the difference in the 

mean vectors. However, if the CSI is not known precisely (e *0, i.e., partially coherent or 

noncoherent detection) the difference in the covariance matrices under the two hypotheses 

will depend on the interaction between the signal structure ( c0 and c, ) and the covariance 

structure of the channel uncertainty vector e. Hence, the structure of the channel uncertainty 

can actually be exploited by the receiver by including a quadratic component in the detector, 

but only if the signal structure is chosen appropriately. In particular, if an antipodal signal 

structure is chosen, the structure of the channel uncertainty cannot be exploited by the 

receiver (at least based on second-order statistics) and will serve only to degrade system 

performance. 

In order to exploit both the available CSI and the structure of the channel uncertainty 

in the receiver, we propose to develop adaptive LQ receivers in which the detector takes the 

form 

where <D is a Hermitian (conjugate symmetric) matrix that determines the quadratic 

component of the detector, h is a complex-valued vector that determines the linear 

component of the detector, and T is a real-valued detection threshold. 

(4.5) 
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4.2 Adaptive Algorithm Based on Modified Deflection Ratio 

The first question that must be answered in order to implement such a detector is how 

to choose the components (4»,h,t). One possible approach to this problem is to choose 

(<D.h,r) to minimize the quantity 

This leads to a minimum-mean-squared-error (MMSE) LQ receiver. Note that if an antipodal 

signal structure is employed, the resulting detector will be equivalent to the more familiar 

MMSE linear detector [6, 9], Unfortunately, in general, identifying the MMSE LQ detector 

requires knowledge of the third- and fourth-order moment structure under both hypotheses in 

addition to the first- and second-order information that is required to identify the linear 

MMSE detector. Hence, this approach to LQ receiver design is somewhat impractical, 

particularly if the statistics of the problem are time-varying and must be acquired adaptively. 

As an alternative to the MMSE approach, we consider the simple expedient of identifying the 

optimal (necessarily LQ) detector corresponding to the hypotheses HQ and H\ under the 

additional assumption that the additive noise vector y is Gaussian. While this is clearly not 

an accurate assumption in most cases, it is nevertheless anassumption that o ften 1 eads to 

suboptimal receivers with excellent performance characteristics, In particular, if an antipodal 

signal structure is employed, this approach will again lead to a detector that is equivalent to 

the MMSE linear detector. Since the MMSE receiver is known to be a robust receiver in the 

presence of heavy MAI, it can be argued that the assumption of Gaussian additive 

interference is a good starting point for designing robust detectors even on multiple-access 

channels. Similarly, it has been shown in [21] that the maximum divergence between an 

appropriate Gaussian distribution and the MAI-plus-noise component at the output of the 

(4.6) 
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linear stage of an MMSE detector is quite small in most cases. Assuming the matrices E0 

and E, are invertible, this approach leads to an LQ detector with components given by 

* = (4.7) 

T = ln(|E,|/|E0|)-|ie*|L 

While Equations (4.7) provide a possible solution to the problem of identifying the 

components of the LQ receiver, it is not a completely satisfying solution for two reasons. 

First, this solution requires the inversion of the matrices E0 and E,. Since the system is time-

varying, the matrices E0 and E, must be tracked adaptively, and the inverses must be 

recomputed accordingly. Since matrix inversion is a computationally intensive operation, 

frequent recomputation of these inverses is undesirable. While it is possible to track both the 

matrices and their inverses directly using subspace decomposition techniques (as discussed, 

for example in [81,82]), it is of interest to identify adaptive solutions for (<D,h,r) that do not 

require inversion of E0 and E,. Second, the solution given by Equations (4.7) requires prior 

knowledge of the signal structure for the problem and does not provide any insight or 

methodology for choosing a signal structure adaptively in order to optimize receiver 

performance. 

To address both of these deficiencies of solution in (4.7), we consider an alternative 

approach to adaptive LQ receiver design, which allows us to identify simultaneously both a 

signal structure (c0,ct) and a detector structure(<D,h,r) that are jointly optimal in a certain 

sense. Toward this end, we assume for the moment that the matrices Ec, and ET are known 

to the receiver, along with the current estimated CSI vector â (from which we can also 

estimate E-). In this case, both the mean vector ji and the two covariance matrices E0 and 
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E, are explicit functions of cq and ci as given in Equations (4.3) and (4.4) above. To 

simultaneously adapt both the signal structure and the detector structure, we seek a solution 

(c0,c,,h,<b) to the constrained maximization problem 

max. D(c0,c„h,<D) subject to: ||c0||2 =||c,||2 < Eh, (4.8) 
(co«ct .h.v) 

.V-I 

where |c, | , Eb represents the energy transmitted per bit, and 
/=0 

The optimal detector structure is completed by defining the threshold t as before; that is, 

T = ln(|t,|/|Ë0|)-ji-*ji. (4.10) 

Perhaps the most intriguing questions regarding this approach to receiver design are the 

proper choices for the cost function and the uncertainty class. To keep the problem tractable, 

it would be desirable to choose a cost function and an uncertainty class in such a way that the 

resulting problem could be decomposed into a set of tractable, independent problems for each 

of the possible components of the hypothesized mixture distribution. On the other hand, it is 

also desirable that the uncertainty class reflects the actual structure of the uncertainty in the 

problem and that the cost function is indicative of the relative probability of error between 

two candidate distributions. Unfortunately, these two goals are generally in conflict, and we 

will be forced to settle for a suitable compromise. We refer to the cost function -D(c0,c,,h,<D) 

as the modified deflection ratio. A more restricted version of this cost function has been 

studied previously in [83], where it was shown to have some desirable properties. For the 
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particular problem of detecting a zero-mean Gaussian signal in the presence of zero-mean 

Gaussian noise, this cost function is equivalent to the modified deflection ratio discussed in 

To see that this solution is indeed optimal in some sense, we note that, for a fixed 

signal structure, the maximum value of the modified deflection ratio is given by 

D'(c„,c,)= max D(c„c„h,<l>) = l.-(E;,+Ef,)^+iTr(E„Erl-21), (4.11) 
(h0,n,,w) \ / \ / 

which is attained (except for an arbitrary scaling factor) if and only if 0 = L~t-2^1, 

h0 = Eô'm » and h, = Hence, for a fixed signal structure, maximizing the modified 

deflection ratio leads to a detector structure that is equivalent to the optimal Gaussian 

detector. 

This approach also leads to efficient adaptive algorithms. To see this, we consider 

first the problem of maximizing D(c0,c,,h,<D) for a fixed signal pair (c0,c,). While an 

adaptive algorithm could be derived by attempting to maximize the modified deflection ratio 

directly over all possible sets(h0,h,,<l>), an easier and more stable approach is based on the 

fact that the set (h0,h,,4»j maximizes the modified deflection ratio if and only if (modulo a 

scaling factor) 

[84, 85]. 

where (h0,h,,4>) is chosen to solve the dual minimization problem: 
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minhô£0h<) subject to n*h0=l, 

minhfL,h, subject to ^*ht =i, (4.12) 
i»i 

nun Tr[«DZo*DZ,] subject to Tr[(L, -£„)<!>] = 1. 

An adaptive solution to this set of constrained minimization problems, which does not 

involve matrix inversion, can be derived straightforwardly using either the least-mean-square 

(LMS) algorithm or the recursive least squares (RLS) algorithm. The LMS solution, for 

example, leads to an adaptive algorithm analogous to the well-known minimum-output-

energy (MOE) implementation of the linear MMSE detector proposed in [11]. 



www.manaraa.com

Chapter 5 Adaptive Multicoding 

33 

Adaptive LQ receivers has been developed in Chapter 4 in order to exploit both the 

known CSI and the structure of the channel uncertainty. A related adaptive algorithm has 

also been derived based on the properties of the proposed cost function the modified 

deflection ratio. 

In this chapter, we design the adaptive modulation scheme to enhance the 

performance of the proposed LQ receivers. First, we discuss some important distance criteria 

for signal design. Second, the adaptive multicoding technique is introduced to maximize the 

J-divergence for searching the optimal signal constellation. A gradient search a Igorithm is 

also developed for system simulation. At the end, we conduct some simulation work to 

evaluate the robustness of LQ receivers and the efficacy of adaptive multicoding. 

5.1 Distance Criteria 

In the area of signal design for communication systems, the optimal signals are 

defined as those that minimize the probability of error. However, the optimization of a 

statistical distance measure between competing hypotheses has become an alternative 

approach to signal design for two reasons. First, in many cases, direct minimization of the 

probability of error in order to determine an optimum signal set is not possible. This may be 

because an explicit analytical expression for the error probability is too difficult to find, or 

even if it can be found, the expression may be too complicated for analytical or numerical 

minimization. Therefore, it is useful to search for signal selection criteria that may be weaker 

than error probability but are easier to evaluate and manipulate. Second, the classical design 



www.manaraa.com

34 

strategies (such as Bayes, minimax, and Neyman Pearson) for optimal signal detection and 

other decision problems require a complete statistical description of the data in order to 

specify the optimum decision rule structure. However, it has been demonstrated that 

procedures designed around a particular model may perform poorly when actual data 

statistics differ from those assumed. Thus, since there is frequently some uncertainty 

concerning the statistical structure of the data, it is of interest to find decision procedures that 

are robust, that is, which perform well despite small variations from the assumed statistical 

model. It is shown in [86] for the general case that robustness in terms of risk implies 

robustness in terms of distance, a fact which, together with the added tractability of the 

distance measure, enhances the desirability of using the later criterion. 

In the search for suitable criteria, we often consider a simple binary hypothesis-

testing problem in which we assume that there are two possible hypotheses, H0 and Hi, 

corresponding to two possible probability distributions PQ and Px, respectively. We may 

write this problem as 

Ho : x ~ P0 

versus (5.1) 

H x : x ~ Px 

where the notation "x ~ P" denotes the condition "x has distribution P ". It is well known 

that the optimal detector in both a Bayesian and Neyman-Pearson sense is the likelihood ratio 

test 

£(x)=-5lH->r (5.2) 
Aj(X) < 

H0 

where p0(x) and p,(x) are probability density functions for the two hypotheses, and r is 

some threshold. Note that the error probability depends on the total distribution of the 
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likelihood ratio. The likelihood ratio L(x) will play a prominent part in the following 

discussions. 

The notion of a distance between two probability distributions is quite useful. The 

further apart we can make these distributions, hopefully the smaller will be the probability of 

mistaking one for the other. Therefore, various distance measures have been studied as 

simple substitutes for the error probability. Among them, there is a general class of measures 

of discrimination between probability measures p0 and px known as f-divergence [87] or 

Ai-Silvey distances [88]. Mathematically, these distance measures are given by 

where £0 indicates that the expectation is taken with respect to p0 and where C(.) is a 

continuous, convex real function and A(.) is an increasing real function of a real variable. 

Many well-known measures of discrimination including Kullback-Leibler (KL) distance, J-

divergence, Bhattacharyya distance and Kolmogorov variational distance, as well as other 

commonly used measures are members of this class. In the following, we will briefly discuss 

KL distance, J-divergence, and Bhattacharyya distance. Then we will explain why we choose 

J-divergence as our distance criterion for adaptive multicoding. 

KL Distance Kullback Leiber (KL) distance (also called relative entropy in [89]) 

between two probability density functions p0(x) and /?t(x) is defined in [90] as 

d(P o .  P l)=h{E0[C(L(x))]} (5.3) 

KL(p Q , p l )  =  E l {H £ ~r) }  
Po( x )  

(5.4) 

= £,{ln(£(x)} 

and 
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Pl(x) 

= fp0(x)ln(^M)rfx 
J A(x) 

= -£0{ln(Z(x)} 

(5.5) 

In statistics, it represents the expected logarithm of the likelihood ratio. It can be shown that 

KL distance is always non-negative and is zero if and only if p0(x) = p,(x) [89]. However, it 

is not a true distance between distributions since it is not symmetric 

(KL(p0,pl)*KL(pi,p0) in general) and does not satisfy the triangle inequality. 

Nonetheless, it is often useful to think of KL Distance as a "distance" between distributions. 

Surprisingly, when the amplitude distribution of the observation vector is symmetric, the KL 

distance becomes a symmetric function. In [91], it is shown that the dependence of the 

detector's performance on signal characteristics can be related to the KL distance when the 

noise has statistically independent, identically distributed (i.i.d.) components. Its properties 

determine the impact of signal set selection as well as noise amplitude distribution on 

performance. However, KL distance cannot provide numeric estimates of error rates, even 

though it does express the dependence of the error probabilities on the choice of signals. 

Rigorously speaking, the KL distance only determines asymptotic performance. 

J-Divergence J-divergence was first introduced by H. Jeffreys in [92]. It is defined as 

the difference in the expectations of the log-likelihood ratio under two hypotheses. 

J = Ex (ln(£(x)} - E0 (ln(L(x)} (5.6) 

It is a symmetric form of the KL distance, that is 

J = KL(p0 ,p l)  + KL(p l ,p0)  (5.7) 
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The J-divergence satisfies all the properties for a distance (metric) except the triangle 

inequality. Several other properties of the J-divergence and various applications to 

classification and hypothesis testing are studied by Kullback in [93]. It is also noticed that the 

J-divergence depends only on the first moments (mean values) of the likelihood ratio while 

the probability of error requires the total distribution of the likelihood ratio. It can be shown 

that the J-divergence is a convex function of the likelihood ratio. Some applications of J-

divergence to signal selection are studied in [94]. For Gaussian processes with unequal mean 

and same covariance, the J-divergence signal selection criterion yields signals that are in fact 

also optimal on an error probability basis. This result is unfortunately not universal. For 

Gaussian processes with different means and covariances, the J-divergence yields results at 

low SNR that are well correlated with probability of error, but not well correlated at high 

SNR. 

Bhattacharyya Distance Bhattacharyya distance is defined as 

B = -\n p (5.8) 

where p is the Bhattacharyya coefficient defined as 

P = ypQ(x)p l(\)dx 

= ( 5 - 9 )  

= E0{V£(x)} 

In fact, it is a special case of the cumulant generating function of the test statistic under H0 

which is related to the well-known Chemoff bound [79]. The Bhattacharyya distance is also a 

convex function of the likelihood ratio. It has many interesting properties. One property 

discovered by Kailin and Bradt [95] is described in the following theorem. 
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Theorem: If for two sets of parameters a and fi, we have B(a) > B((5) or 

p(a)<p(f}), there exists a set n = (;r0/r, ) of prior probabilities for which 

P e(a,7r)<P e(P,7c).  

The J-divergence has this property as well, but it is hard to assert something more 

than just existence about the proper set of prior probabilities. For the relationship between J-

divergence and Bhattacharyya distance, the inequality 

J > S B  (5.10) 

can be established. For some applications, the Bhattacharyya distance is claimed to be 

superior to the J-divergence for Guassian processes [96]. 

For the problem of interest, it is straightforward to show that the quantity D' (c0,c,) 

in (4.11) is equivalent to the J-divergence between the two Gaussian distributions 

corresponding to the signal pair (c0,c,) (see Appendix A). Hence, solving Problem (4.8) leads 

to the optimal Gaussian detector for the signal pair that gives maximum divergence distance 

between the two corresponding Gaussian hypotheses. Since maximizing the J-divergence is 

known to be a useful criterion for signal selection in Gaussian detection problems [91, 93, 

97], this is a desirable result. In addition, for the problem of interest, the derivatives of the J-

Divergence with respect to the coordinates of the signals are much easier to derive than those 

for the Bhattacharyya distance. Therefore, we will choose the J-divergence as distance 

criteria to find the optimal signal constellations. 
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5.2 Adaptive Multicoding 

To solve simultaneously for the optimal signal structure and the corresponding 

optimal detector, we note that the value of D' (c0,c,) can be rewritten in the form 

D' (c0,c,) = fTh + iTr(LoOZ,*), (5.11) 

where (h,<D) represents the optimal detector for (c0,c,). Further, assuming that the set (h,<I>) 

is given, the formula for the gradient of D'(c0,c,) is straightforward (see Appendix B). 

Hence, to solve simultaneously for the signal structure and the detector structure, we can use 

a recursive gradient descent procedure that alternates between updates of (h,<D) to solve 

(5.11) and updates of (c0,c,) to solve (4.7). 

The gradient descent algorithm works as follows. First, the information bit sequence 

and the signature sequence matrix are generated. Then, we form the channel tap covariance 

matrix and the background noise vector. At the b eginning, we set the channel uncertainty 

coefficient equal to zero, which represent the channel is completely coherent. Later we will 

increase the channel uncertainty to different levels in order to evaluate the impact on 

receivers' performance. Based on the given channel uncertainty, the estimated channel tap 

vector and the channel estimate error vector are independently generated. Then, we set some 

initial values including a random start point, a threshold, and a step size. Now we can 

compute the mean vector and the covariance matrices of the transformed observation given 

the start point (c0,ct). By solving (4.7) and (5.11) we can find the associated detector (h,«I>) 

and J-divergence with respect to the start point. Then, we can find the gradient descent 

direction by using the derived gradient expression of J-divergence. Adding a small step size 

along the gradient direction from the start point, we reach a new start point (c„,cj. Find the 

new detector (h,<D) corresponding to the new start point by solving (4.7). Then plug the new 
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detector into (5.11) to find the corresponding new J-divergence. At this point, compare the 

changing rate of J-divergence with the threshold. If the changing rate is greater than the 

threshold, adapt the step size and add further along the current gradient direction, then repeat 

the above procedure until the changing rate of J-divergence is less than the given threshold, 

which indicts the maximum value of J-divergence is approximately achieved for the current 

pair of signal structure(c0,c,) and receiver structure(h,<D). Hence, we can compute the 

transformed observation based on the current data, and apply LQ detector to detect the 

transmitted information bit, count the detection error by comparing with the original 

information data. By following the above procedure, we are able to evaluate the system 

performance under various uncertainty levels by adjusting the channel uncertainty coefficient 

in the range from zero to one. Figure 5.1 illustrates the algorithm in a flow chart. 

To actually implement the procedure described above, we need estimates of Z, and 

£y, and we must restrict the search space for the signals (c0,c,) to a reasonable parametric 

set. In fact, since the desired signal structure will be computed adaptively at the receiver, the 

parameters describing the new signals must be communicated to the transmitter whenever the 

signal structure is updated. As a result, it is desirable to keep the dimensionality of the 

parameter space as small as possible. One possibility is to assign two linearly independent 

"basis" signature sequences (s0,s,) to each user and adapt the signal structure by searching 

over the two-dimensional signal subspace spanned by the known basis signatures. We define 

c0 and c, as 

Co = YoSo + Y,s,, where yl+Y^E, 

c t  = Y2 so +Y3 sp where y\  + y; < Eb  

then choose y0, y,, y,and y3 to maximize D'(c0,c,) in (5.11). We refer to the above 
technique as adaptive multicoding. 
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This approach has an additional advantage related to estimating Ec and ST. That is, 

an initial training period can be adopted prior to signal adaptation, during which we set 

c0 =s0, c, =-s0 for the first half of the training period and c0 =s,, c, =-s, for the second half 

of the training period. and £r can then be estimated from the received data {i.e., blindly) 

during the training period in a straightforward manner. Once the training period is ended, 

signal adaptation can begin, and the estimates of Lc and can be updated using a decision 

directed approach. 

5.3 Simulation Work 

In order to evaluate the efficacy of adaptive multicoding and the robustness of LQ 

detectors, we have completed a simulation of the proposed adaptive signal/receiver scheme 

in the binary case. The performance of LQ detectors and linear MMSE detectors are 

compared for both fixed signaling and adaptive signaling. The procedure of this simulation 

work is presented below. Throughout this section, we make the following assumptions [101]: 

1. Both signals have equal energy, and the spreading gain is zV = 3l ( |jc01~ =||c, f = 31 ). 

2. The additive noise on the channel consists of ISI and AWGN only. 

3. The ISI is generated by frequency-selective Rayleigh fading with 

L +l = 16 resolvable paths that are independent but not identically distributed. The 

fading parameters are assumed constant over blocks of 100 bits and independent 

from block to block. The total power of the fading process (i.e., the total variance 

for all paths) is normalized to one. 

4. The statistics of the channel are known a priori; in particular, the covariance 

matrix is diagonal and: 
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z,=pz„,  

£ à=(l-P)S a ,  

£T=<rI,  

(5.13) 

where £„ represents the covariance matrix of the channel, 0 <p < l represents the uncertainty 

coefficient of the channel and cr2 >0 represents the variance of the additive channel noise 

(excluding ISI). A completely coherent channel corresponds to (3 = 0, and a completely 

noncoherent channel corresponds to p = 1. The channel SNR is given by Eb/Nn = 3 l/cr2. 

First, let us compute the conditional statistics. From the observation vector given in 

(4.1) and (4.2), for known CSI ô, and under the assumption that e, î and y are 

uncorrected, the conditional statistics can be obtained as follows. 

Under hypothesis H 0 ,  

where Cro, C0, represent respectively the signature sequence matrices for the cases of 0 and 

1 transmitted as the current bit. The noise vector y can be generated from its covariance 

matrix Lr with some known variance a2. Now we know everything about the observations 

except ISI. Let 6 G {0,1} represent the transmitted bit value, and assume the CSI vector a is 

Yo -i(Coo -Col)â+C00e + î + y 

Mo = "2 (^-"00 ~^01 )® 

^•o = C00£cC00 + 

(5.14) 

Under hypothesis Hx, 

Yi  =K C o .  -C00)â+Cole + î + y 

Mt — |(Coi — ̂ -oo )® 

E,«C0IEBC;1+El+ET 

(5.15) 
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stationary with zero mean. Then i and £t can be derived for the problem of interest (see 

Appendix C) as 

where b_ x  and 6+1 represent the transmitted bit values for previous bit and next bit, 

respectively, C.l0, C_u represent the signature sequence matrices for 0 and 1 transmitted in 

the previous bit, and C.10, C„u represent the signature sequence matrices for 0 and I 

transmitted in the subsequent. 

As for linear detectors that exploit antipodal signaling (C.Q =-C.t), the conditional 

statistics have a simpler expression. 

Under hypothesis H0, 

y o — C00tt +- CqqE + î + y 

î = (*_[ -y)(C_n -C_10)a_, +(6+l -y)(C+ll -C+10)a+l 

E. =K(C.„ -C„l0)Ee(C.„-C.J + (C+II —C+10)£tt(CtlI -C+10)') 
(5.16) 

(5.17) 

Under hypothesis Hs, 

y, =-C00â-C006 + î + y 

Hi =-C00â 

= ̂ -002"C^--00 + 2*1 

(5.18) 

ISI vector and its covariance matrix have the following forms: 

(5.19) 
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Having computed all of the necessary statistics, we can use Matlab to simulate the 

system. Documentation of simulation code is presented in details below. 

• Generate the information sequence: A {0, 1} sequence is randomly 

generated with equal probability by using functions "rand" and "fix". 

• Generate the signature sequence matrix: We choose two orthogonal Gold 

sequences as basis vectors. One sequence is used for transmitting "0" and the 

other is used for transmitting "1". The corresponding signature sequence 

matrices are generated by permutation of basis vectors. 

• Generate the background noise vector: Given the variance of the 

background noise, an AWGN vector is generated. First, use function "randn" 

to generate a standard AWGN vector with zero mean and variance one. Then 

use function "chol" to do the Cholosky decomposition of the covariance 

matrix with the given variance on its diagonal. M ultiply the result with the 

standard AWGN vector to get the desired background noise vector. 

• Form the channel tap covariance matrix: We assume the channel has 16 

resolvable fading paths that are uncorrected but not identically distributed. A 

diagonal matrix is formed with all the variances of the channel taps on the 

diagonal by descending order. The total power of the fading process (i.e., the 

total variance for all paths) is normalized to one. 

• Evaluate under various uncertainty level: We evaluate the system 

performance under different uncertainty level by using a loop to vary the 

channel uncertainty coefficient from 0 to 1. 

• Generate the channel estimate error vector: Given the channel uncertainty 

level, use (5.13) to compute the covariance matrix of estimate error. Then use 
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functions "randn" and "chol" to generate the channel estimate error vector by 

assuming it is Guassian with zero mean. 

• Generate the estimated channel tap vector: Use the same approach for 

generating the channel estimate error vector. 

• Linear Detectors: (1). Fixed signaling: use antipodal signals for linear 

detectors. Choose one signature sequence matrix C0 for transmitting "0", and 

use C = —C0 for transmitting "1". Use (5.17), (5.18) and (5.19) to compute 

the transformed observation, the mean vector and the covariance matrix. Find 

the linear detector and compare the test statistics to the threshold to determine 

the information bit. Count an error if it is not identical with the transmitted bit. 

(2). Adaptive signaling: still use antipodal signals but rotate the fixed signal 

structure on the plane spanned by the two basis vectors. Use function 

"fminbnd" to maximize the J-divergence in order to find the optimal signal 

structure. Once the optimal signals are found, follow the procedure for fixed 

signaling to determine the performance. 

• LQ Detectors: (1) Fixed signaling: use orthogonal signals for LQ detectors. 

Since the two basis vectors are orthogonal, we simply choose them. Use 

(5.14), (5.15) and (5.16) to compute the transformed observation, the mean 

vector and the covariance matrix. Find the LQ detector and compare the test 

statistics to the threshold to determine the information bit. Count an error if it 

is not identical with the transmitted bit. (2) Adaptive signaling: no restriction 

on signal structure, just search the plane spanned by the two basis vectors to 

find the optimal signal structure that maximizes the J-divergence. Use the 

gradient descent algorithm developed in last section to determine the optimal 
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pair of the receiver structure and signal structure. Detect the information bits 

and count the errors. 

• Compute BER and plot curves: The bit error probabilities for all scenarios 

are computed. The curves demonstrating BER vs. Uncertainty are plotted. 

The performance comparison between linear detectors and LQ detectors for both 

fixed signals and adaptive signals is presented in next section. 

5.4 Performance Evaluation 

The results of the simulations are illustrated in this section in Figures 5.2-5.7. 

In Figure 5.2, the performance of an LQ receiver employing orthogonal modulation is 

compared with the performance of a linear MMSE receiver employing antipodal modulation. 

Note that for any given SNR, the LQ receiver outperforms the linear MMSE receiver for high 

uncertainty, but the linear MMSE receiver outperforms the LQ receiver for low uncertainty. 

As the SNR increases, the cross point of the two performance curve moves toward left side 

of the graph. This is consistent with the fact that, as the SNR on the channel increases, the 

dominant error mechanism on the channel becomes the mismatch between the detector and 

the channel that results from inaccurate CSI estimates. 

If adaptive modulation is employed, is there any improvement in the performance? 

The signal sets for both the linear detector and the LQ detector were chosen adaptively to 

give the best performance in each case relative to the instantaneous CSI and the known 

channel statistics. The results of simulations for these cases are illustrated in figure 5.3 

and5.4. 

In Figure 5.3, which illustrates the case of adapting a signal set for the linear detector, 

only c0 was chosen adaptively, since antipodal modulation (c, =-cQ) was assumed. Since the 
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signal structure is fixed, we only rotate the antipodal signal pair to maximize the divergence 

distance that depends on the level of channel uncertainty. Note that only a slight gain is 

obtained by adaptive modulation for the linear detector. 

In Figure 5.4, which illustrates the case of adapting a signal set for the LQ detector, 

both c0 and c, were chosen adaptively subject to the equal-energy constraint. Thus, we 

choose the signal pair to maximize the divergence distance with more freedom. There is a 

significant performance improvement for the LQ detector with low SNR; however, with 

increasing SNR, adaptive modulation can actually perform worse than orthogonal signaling 

for high uncertainty. This indicates that the divergence distance is not a good approximation 

for the probability of bit error for high SNR. 

In Figure 5.5, the LQ detector and linear detector with adaptive modulation are 

compared. The performance of the adaptive LQ detector is always at least as good as the 

performance of the linear detector. This is the desired result and indicates not only that the 

modified deflection ratio is a good criterion for signal selection for this problem, but also that 

the recursive LMS algorithm discussed above converges to a nearly optimal solution. 

Furthermore, as one would expect, the LQ detector becomes strictly better than the linear 

detector as the uncertainty on the channel increases at a fixed SNR. Finally, as the SNR on 

the channel increases, the level of uncertainty at which the LQ detector begins to 

significantly outperform the linear detector converges to zero. 

The results of the same sequence of simulations are summarized and plotted as a 

function of SNR in Figure 5.6. Here the increasing advantage of the LQ receiver relative to a 

desired bit error rate is clearly displayed. In particular, for values of |3 > 02, the performance 

gain associated with the LQ detector in the operating range of interest (say Pe < 10~3 ) is 

dramatic. 
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At the end of this section, we present the optimal binary signal constellation under 

different levels of channel uncertainty. Figure 5.7 illustrates how the signal pair varies 

between antipodal signals and orthogonal signals. Antipodal signals are chosen for coherent 

channels while orthogonal signals are chosen for noncoherent channels. 
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Chapter 6 Performance Analysis of LQ Receivers 

The most desirable cost function is the probability of error that is the most common 

performance evaluation criterion for communication reliability. Unfortunately, it is 

intractable i n m any cases. W hile J-divergence i s u seful for s ignal s election b ecause of its 

feasibility, it is not tightly correlated with probability of error at high SNR. 

In this chapter, we study some potential cost functions. Although the probability of 

error for LQ receivers has no analytical closed form, we can often resort to Chemoff bound 

in many practical applications. Particularly, we study some bounds related to Bhattachayya 

distance and J-divergence. At the end of this chapter, we explain why we prefer J-divergence 

rather than others. 

6.1 Intractability of BER 

For the general binary hypothesis testing problem described in (a), the probability of 

bit error is defined as follows [79], 

P,=P{£^*r\Ha} + P{££{<r\H,} (6.1) 
Po(x) Po(x) 

where 

r= — 
a", 

and xQ and rcx are priori probabilities for two hypotheses. Thus, we can rewrite (6.1) as 
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Pc = 7T0P(L > r) + 7TkP(L < r) (6.2) 

where 

r _ A(«) 
Po(x) 

is the likelihood ratio. By definition, 

P(L>r) = £{/[r„,(Z)} (6.3) 

where I[T33)(L) is the indicator function of the set [r,oo) defined by 

f 1 if x > T 

-/,<r (6'4) 

Therefore, if we can compute £{/(£)}, then we can compute the probability of error. 

Unfortunately, £{/(/.)} is intractable in many cases. However, in the real world, it is usually 

sufficient to obtain some good bounds on the error probably. An alternative solution is to 

find a function f>I for which E{f(L)} is easy to compute, so that E{f(L)} can bound 

£{/(£)}. Various bounds discussed later in this chapter are based on those functions. For 

example, E{C) is used for deriving Chernoff bound; and £{(£-l)log£} is applied for a 

lower bound related to J-divergence. 

In order to analyze the performance of the LQ detector in (4.5), we must compute the 

probabilities Pj(T(y)>r) forj = 0, 1. For the general binary hypothesis testing problem in 

(a), it can be discussed more easily if we first transform the observations to some new vectors 

whose components are all independent. We call this procedure whitening transformation. It is 
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well known [98] that if E0 is positive definite and £, is Hermitian, then there exists a 

nonsingular matrix W such that 

WI0WR = I 
wi,wr = A' (6,5) 

where I is identity and A is diagonal. Without loss of generality, we assume that covariance 

matrices £„ and L, satisfy the above assumption. Thus, £0 and £, can be s imultaneously 

diagonalized by the whitening matrix W. W can be found by the following procedure[98] : 

1. Cholesky Decomposition: 

Since £0 is positive definite, there exists a nonsingular matrix A such that 

£0=A*A, (6.6) 

that is 

(A')-%A-'=:. (6.7) 

2. Takagi Decomposition: 

Let B =(A*)"lElA™1, £, is Hermitian, so is B Then there exists a unitary matrix U such 

that 

U BU = A (6.8) 

where A = diag(Al, and {Af} are eigenvalues of B. 

3. Let W = A~'U. 
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After the whitening transformation, we have a new binary hypothesis testing problem 

H0 :z~N(m0,I), 
versus (c) 

//, :z ~ N(m,,A). 

where z = Wy,m0 = W|i0,mt = W|i,. We can compute the new test statistics 

T(z) = I z r  (I - A"1 )z+(m[ A-1 - m^z + C 

= Z +bkzk) + c (6.9) 
*=i 

-£r.&,)+c 
A»1 

where 7XzJ = a*z' + 6tzt, 

at=i(l-A;1), 

K — ~mok ' 

C = y(log(| L0 |Z IE, D + iiKh0 . 

It is straightforward to show that zp z2,..., z„ are independent Gaussian random variables 

under distributions: 

H0  :zk  -N(m04,l), 

versus (c') 

H y :  z k ~ N ( m l k , X k ) .  
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Thus, the probability density function of Tk(zk) under Hf can be determined by a method 

using characteristic functions [12]. It follows that the characteristic function 

<V<0)= "\e"T-PtSTMT, (6.10) 

of the random variable Tk (zk ) = akz\ +bkzk equals 

4>r» = E^JmTk <Zl,)= J eJmTt  <Zt ' Pzk (Zk Wk (6.11) 

If, therefore, the above integral can be written in the form 

Je>r'/i(7*)</7; (6.12) 

it will follow that 

PtSTJ-HTJ (6.13) 

In our case, 

"V, (®) = £ e"'r' Ci W, 
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ht ~(At- -r-<at 7t )- _ l2 t 
fi r 1 C-5-^ , -2. 

- £e" V2^e*—^—w+v.) !><rt 

I 

+ £e "fi—e" ^ 2(b t-+Ac tT t) 1dTk 
* yJ27ccrik -

a
'
k 

Hence, the above yields, 

Prk (Tk ) = , '  ,L(g-c< «(7, ) -  e-"' u(-Tk )) 
C2 T(A^^tfirt )(T^ )2 

1 

where ct = =^-? 

R~BTI-(.HK+AATTT) :  _ L2  
( — m j ) 

(6.14) 

(6.15) 

<r;t = I, for/ = 0, 

&)k = 4, for/ = 1. 

and m(T^) is step function. This result can be reduced to the gamma density in [79] under 
rt 

zero-mean Guassian distribution. The probability density, pT, of 7(z) = ̂ Tk(zk) is the n-
t=t 

fold convolution 

Pr=Pr tW)* pTi  (T2)*..*pTn (7„). (6.16) 

Unfortunately, no general closed form is known. 
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6.2 Chernoff Bound 

We can use the result after the whitening transformation to obtain the Chernoff bound 

of the LQ detector. The Chernoff bound is defined in [79] as 

Pe < 7tx-*7T\eT»^, 0< s <1 (6.17) 

where uro(s) is the cumulant generating function (cgf) of T(z) under H0 . In the problem 

of interest, 

ur.o(s) = log(£{eiru) | //<,}) (6.18) 

= log(£{e k" elC\H0}) 

= sC + | H0}) 
*=l 

a
n m nakA+à» 

^C + log(f[£{e |W„I) 
k=1 

= 5C + Xlog(£{e,(°'-''+6l-"t) IH0}) 
k=I 

and 

E { esiak : ;+b t :k)  |  ̂  } 

V5r 
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--[(l-2.vut );k- +.vAt ):k +mat , 

e 2 oz k 

. ; 2"'nt + (*» . , 

* l-2.v«t * l-2.vat 

1 f° 2<l-2iat) e z(l"z,nu </zt 

m„k+sbk ; m,|t-r.vAt m„k~ 
k l-2.tat l-2.vot l-2.vat i 

i - f e  w w - . ) ' r  
yfïir 

I /•„ 
m0k + S^k \2 

. r1 ~ x~ V-t . ~ / (I-2.va)m,lt--(/»,lt+.vAt)-

1(1 — 2sak) - £ 1 — 2sak ; 

y[27t(\-2saky- 2[(l-2sa4p]2 

1 2.iakmok' +lshkmok +\'ht~ 
(1 -2sak)~-e 2°-2iai) (6.19) 

if ;r0 =Kx =|, then 

p. s 

1 HC+^log[(l-2rat) 2"™2"u 1) 

ic,+±[-i,oAi-2,w+'-"'izzr^i) 
Pe <\e , 0<j<1. (6.20) 

The bound is minimized by the value s0 solving 

d"r.o(*) _ 0 

8s 

c t yr 
ak , (2akmok

1+2bkm0k+2sbk
1)2(\-2sak) (2sakmok + 2sbkmok + s1bk

1)(-4ak) 
h l~2sak 4(1 -2sakf 4(1 -2sak)2 

r  , yr 
a* ,(akmok1+ bkmok + sbk )(1 -2sak) + (2sakmQ

2 + 2sbkm0k + s\2)4ak 

hl~2sak (1-2 sak)2 
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_ Q ("t •atw,|t: )+(6f -2%-).v-otA;.v- (621) 

*=l 

Therefore, the optimum s0 can be solved numerically. For the i.i.d. case, 

a, =a2 =... = an = a, 

bx =b2 =... = bn =b, (6.22) 

/"o, = w02 =... = m0n =m0 

the optimal s0 can be determined analytically as follows. 

0=C(l-2as)2 + n[(a + bm0 + am0
2) + (b2 -2al)s-ab1s1] 

= c(l - Aas + 4 a 2s2 ) + n(a + bmQ + am0
2 ) + n(b2 — 2 a2)s- nab2 s2 

= (4a2C - nab2)s2 -[4aC-/i(62 - 2a2 )]s+[C + n(a + bmQ +am0
2)] (6.23) 

Therefore, 

„ _ [4aC'-n(62-2a2)I±([4tiC'-n(Z>2-2a2)|2-4(4a2C-na62)[C+n(ti+6mn+«m,2]j2 n / „ / i /C O H \ 

" 2(4a2C-n«62) ' US5QSL. 

For other cases, we resort to numerical computation. 

For the LQ detector, there are several other bounds that can be found in closed form. 

Kailath obtained the J-divergence and the Bhattacharyya distance for problem (a) in [94] 

respectively, 

J = JT(Z. -I) iog(L)p0dx 

= ±trace[(Z.Q -E,)^1 ~K)H^o +^')(g0-|i,)(^0 -^)"] 



www.manaraa.com

63 

and 

B = -Iog( £(/>„/>,)*<///) 

= 8"(Mo -Hi) (•=Ta")~l(l1o —M-i)"•""2"^°S( ' j 'l) 
(is„lis,l): 

(6.26) 

It can be shown in general that J>8B. Corresponding bounds were introduced by 

Kobayahsi and Thomas in [45], 

It is noticed that the Bhattacharyya upper bound is the particular case of the Chernoff bound 

with s=l/2. 

We compute the above bounds and compare them with the simulated probability of 

bit error of the LQ detector in Figure 6.1 - 6.4. These figures illustrate that all bounds behave 

well at lower SNR. The Bhattachayya lower and upper bounds actually bound the simulated 

probability of bit error. The Chernoff bound bounds from above and J-divergence bound 

bounds from below. The Bhattacharyya lower bound is tighter than the J-divergence bound, 

which coincides with the theoretical analysis. With increasing SNR, the upper bounds appear 

lower than the simulated BER. We conjecture that this is caused by average. That is, we 

average the signal sets in order to compute those bounds since the channel is time varying. 

The sample mean is probably greater than the actual mean at high SNR. Despite this slight 

inconsistency, those bounds can work as good benchmarks to validate the simulation work. 

The simulation results also imply that the Chernoff or Bhattacharyya bounds might be 

better cost functions compare to J-divergence. We need further explain why we use J-

Pe>K,7txejn (6.27) 

and 

7c07Txe'1B <Pe< (%yr,):g-* (6.28) 
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divergence in this investigation. As discussed in Chapter 4, we intended to find the optimal 

receiver structure and signal set simultaneously by maximizing the modified deflection ratio. 

It turns out that the J-divergence is the maximum value of the modified deflection ratio that 

leads to the optimal Gaussian detector for a fixed signal structure. After the optimal detector 

is found, our adaptive algorithm maximizes the J-divergence to identify the optimal signal 

set. Furthermore, assuming that the receiver structure is given, the gradient of J-divergence 

can be straightforwardly obtained. We used a recursive gradient search procedure to alternate 

between the receiver structure and the signal set to find the pair that is jointly optimal in a 

certain sense. Hence, J-divergence is employed in this investigation not only for signal 

selection, but also for receiver design. Plus, J-divergence is well known to be a useful 

criterion for signal selection. As for Chernoff or Bhattacharyya bound, even though it is 

tighter than J-divergence bound and its analytical closed form is available, the efficient 

algorithm to maximize it as a cost function for receiver design and signal selection is still a 

challenging open problem. 
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Chapter 7 M-ary Signal Constellations 

So far, our investigation has focused on adaptive modulation and receiver design for 

binary signals. In order to support high date rate communications, the further study of the 

corresponding design strategy is necessary. 

In this chapter, we extend the design schemes in Chapter 4 and Chapter 5 from binary 

signals to M-ary signal constellations. First, we study adaptive modulation and receiver 

design for M-ary signals in a two dimensional signal subspace. Later, in order to enhance the 

system performance, the signal subspace is extended to multi-dimension based on the 

information theory perspective on signal dimension expansion. 

7.1 Adaptive Multicoding in M-ary Signal Constellations 

When the channel is in a shallow fade, a transmission with higher data rate can be 

supported. Hence, we can transmit signals with a larger constellation size. In this section, we 

extend o ur approach developed in Chapter 4 and C hapter 5 from b inary signals to M-ary 

signals. 

The observation vector at the receiver remains the same form given in (3.9): 

r = Sd + Se + i + Y (7.1) 

We can again transform the observation vector into a zero-mean observation vector as 

follows: 
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(7.2) 

where 
I Af-l 

e = M § C '  

Under t he assumption t hat t he a ggregate additive i nterference i s G aussian, t he p roblem i s 

equivalent to the following M-ary hypothesis testing problem [102]: 

H, : y - N(|i,, E, ), i e {0,1M -1} (d) 

Given the transmitted bit value i and the estimated CSI vector à, the observation vector has 

the conditional mean vector 

ny)( . =(C, -C)à, ze{0,l,...,Af — 1} (7.3) 

and conditional covariance matrix 

EYLZMI =C,EEC; i G -1}. (7.4) 

If all symbols are equally likely, the maximum likelihood detector is equivalent to the 

maximum a post-priori (MAP) detector. We can take hypothesis H0 as a benchmark, and the 

MAP detector takes the form: 

5(y)=arg{ max {0, log£0 (y)}} jeU.2—.tf-t) (7.5) 
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where L0j(y) is the likelihood ratio between Hj  andHa. In fact, the MAP detector consists 

of M -1 LQ detectors. By means of the same adaptive multicoding criteria, the optimal 

signal structure can be obtained by maximizing the minimum divergence distance between 
( M \  

signal pairs in the M-ary constellations; that is, 
i 2 J 

max minD' (cl,c/)=[(|»y -|i,)•(£"' + S;,)(|i7 -p,) + Tr(Z,Z;'+Z,Z;' -2l)] (7.6) 
(c0 ,C| i *  J  

where i,j e -1}. 

The above adaptive modulation scheme has been simulated for M=4 in a two-

dimensional signal subspace and compared with the standard QPSK scheme in Figure 7.2-

7.5. Under the power constraint that the average symbol energy is not greater than unity, the 

adaptive scheme gives almost the same performance as QPSK for lower SNR. As the SNR 

increases, the two performance curves diverge. The adaptive scheme outperforms QPSK at 

the low and high uncertainty ends while QPSK outperforms the adaptive scheme in the 

medium uncertainty range. The simulation results indicate that there is not much benefit for 

adaptation compared to QPSK in a two-dimensional signal subspace. In addition, the claims 

in [91, 94] that J-divergence is not a good indicator of probability of error at high SNR are 

supported here, as the fixed QPSK constellation outperforms the optimal adaptive 

constellation at intermediate values of the uncertainty parameter. 

At the end of this section, we present the optimal quaternary signal constellation 

under different levels of channel uncertainty. Figure 7.1 illustrates that the optimal 

constellation has approximately the same structure of QPSK. Recall that for binary signals, 

the signal constellation was adapted towards antipodal signals for coherent channels and 

orthogonal signals for noncoherent channels. QPSK signaling on the unit circle is equivalent 

to two pairs of antipodal signals that are orthogonal to each other. It is the optimal signal 
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constellation in a Euclidean sense and turns out to be very nearly optimal also for an adaptive 

scheme at both ends of the uncertainty range. Adaptation in such a scenario has little benefit 

compared to QPSK. 

0.5 * 0.5 0.5 

-0.5 ~ -0.5 -0.5 

beta=0 beta=0.2 beta=0.4 
1 1 1 T 

0.5 0.5 ^ 0.5 

0 < 0 V- Or + 

-0.5 -0.5 • -0.5 

-1-1 0 1 "1-1 0 1 "1-1 0 1 

beta=0.6 beta=0.8 beta=1 

- 1  0  1 - 1  0  1 - 1  

Figure 7.1 Optimal Quaternary Signal Constellations under Uncertainties 
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7.2 Information Theory Perspective on Dimension Expansion 

In section 7.1, simulation results demonstrate that adaptive multicoding for 

quaternary signals in a two-dimension subspace doesn't improve the system performance 

significantly as it does for binary signals. We conjecture that if we increase the 

dimensionality of the signal subspace, an adaptive multicoding scheme will once again 

enhance the system performance. Barton's recent work in [44] provides some theoretical 

support for this conjecture on information theory perspective. 

In [44], an asymptotic analysis of the information capacity of wideband CDMA 

fading channels has been accomplished under a scenario similar to that of this dissertation. In 

that work, several useful upper and lower bounds on mutual information between channel 

input and output conditioned on an observed CSI estimate have been developed for channels 

with large spreading gain. These bounds are stated explicitly in terms of the dimension of the 

signal constellation, the number of resolvable fading paths on the channel, the current 

estimate of channel state, and the mean-squared-error of the channel estimate. It has been 

demonstrated that the dimension of the signal constellation has a significant impact on the 

mutual information on the channel and that the dimension necessary to achieve the maximum 

mutual information depends critically on the accuracy of the CSI estimates and the number of 

resolvable paths on the channel. For a wideband noncoherent channel, if the geometry of the 

constellation is adapted in a particular manner so that both the dimension and the fourth 

moment of the constellation increase as the number of resolvable paths increase, the channel 

capacity can be made arbitrarily close to the capacity for a single-user AWGN channel with 

the same SNR. Further, it is shown that the maximum conditional mutual information on the 

channel in the special case of perfect CSI estimates is achieved with a Gaussian constellation, 

but only by letting the dimension of the constellation increase faster than the received SNR. 
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The above idea heuristically i nspires us to expand the subspace dimensionality for 

adaptive multicoding for M-ary signals. Intuitively, we know that dimension-expansion can 

somehow increase the "distance" between signal pairs. For example, the maximin (i.e., the 

maximum of the minimum pair wise) Euclidean distance for quaternary signals on a unit 

circle is 1.414 and the corresponding signal constellation is equivalent to QPSK. When the 

signal dimension expands to three dimensions, the maximin Euclidean distance for 

quaternary signals on a unit sphere increase to 1.633. However, the maximin Euclidean 

distance for quaternary signals on a four-dimension or higher dimension unit sphere is still 

1.633. Indeed, it is straightforward to show that the maximin Euclidean distance for M-ary 

signals is achieved on an (M-l) dimension unit sphere where equal pair-wise distance can be 

obtained. Here, what we are really interested is not Euclidean distance but J-divergence. By 

expanding the dimension of the signal subspace, we gain more freedom for adaptive 

multicoding based on J-divergence. In addition, simulation results demonstrate that the 

maximin J-divergence increases with the increase of the signal dimensionality. Therefore, it 

is of interest to investigate to what extent the dimension expansion of the signal subspace can 

enhance the system performance. 

7.3 Simulation Results 

In this section, we present simulation results to evaluate the adaptive multicoding 

scheme for M-ary signals described in section 7.1 by expanding the dimensionality of the 

signal subspace. Due to computational complexity, we only expand the two dimensions to 

three and four dimensions. Again, we consider a quaternary signal set, that is, M=4. For a 

three- or four-dimensional signal subspace, we need to search the three- or four-dimensional 

sphere to find the optimal 12 or 16 coordinates corresponding to the four signals that 
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maximize the minimum pair-wise J-divergence. In this simulation, uniform channel fading is 

assumed, which means that the covariance matrix of the channel is an identity matrix. The 

spreading gain is N=31. We simulate several channels corresponding to different numbers of 

resolvable paths on the channel including L=l, 5, and 15. It is expected to see some impact 

on the system performance through the signal subspace expansion. I n Figures 7.6-7.8, the 

performance comparison of dimension expansion for SNR=17dB and L=l, 5, and 15 is 

illustrated, respectively. The result for lower SNR case (SNR=7dB) is demonstrated in 

Figure 7.9. For ease of interpretation, the curves are labeled as QPSK-2D (3D, 4D) and 

Optimal-2D (3D, 4D), which denote the maximin Euclidean distance scheme and the 

adaptive multicoding approach in designated subspace, respectively. 

By inspecting the simulation results, several observations can be made: 

1. Regardless of dimension, adaptive multicoding outperforms QPSK for the two 

extremes - completely coherent channels and completely noncoherent channels. 

2. The performance of QPSK is enhanced by expanding dimensionality from two to 

three. The reason is that the maximum maximin Euclidean distance for four 

signals is achieved in the three-dimension subspace. No more performance 

improvement can be made when dimensionality reaches three or higher. Due to 

the inevitable singularity in simulation, we didn't plot the QPSK-4D curve. But it 

is expected to be the same as the QPSK-3D curve. 

3. For adaptive multicoding based on J-divergence, more dimensionality, more 

improvement, but an asymptotical limit is expected. 

4. Adaptive multicoding in a four-dimensional subspace overall outperforms the 

same scheme in a two-dimensional subspace. In particular, when channel 

uncertainty is high, significant performance gain is obtained. This indicates that 

dimension expansion of the signal subspace can enhance the system performance. 
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5. It is also observed that at intermediate level of uncertainty, QPSK in a three-

dimension subspace consistently outperforms adaptive multicoding in a four-

dimensional subspace. Again, this is a negative result probably due to the 

mismatch between J-divergence and probability of error at high SNR. The results 

at lower SNR (SNR=7dB) shown in Figure 7.9 validate this conjecture. 
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Chapter 8 Summary and Conclusions 

In this dissertation, we have investigated the problem of adaptive modulation and 

receiver design in the presence of channel uncertainty on a mobile wireless channel. The 

primary objectives were to identify and analyze robust LQ receivers and a corresponding 

adaptive multicoding scheme in such an environment. 

Based on a detailed review of the relevant literature, there are several unique 

contributions in this dissertation. In addition, there are several interesting problems that have 

emerged. In this final chapter, we summarize the unique contributions and recommend new 

areas of challenging research. 

8.1 Summary of Unique Contributions 

1. Adaptive LQ Receivers In chapter 4, we identified and analyzed the robust 

receivers based on a channel model that incorporates explicitly all significant sources of 

interference as well as substantial channel uncertainty. First, the conditional statistics for a 

binary hypothesis testing problem were derived and discussed. It is evident that the 

availability of CSI can be exploited at the receiver by including a linear component in the 

detector, and the processing gain associated with the linear detector component will be 

maximized if the signals are antipodal. On the other hand, in the presence of channel 

uncertainty the structure of the uncertainty can actually be exploited by the receiver by 

including a quadratic component in the detector, but only if the signal structure is chosen 

appropriately. In order to exploit both CSI and the structure of the channel uncertainty, we 

proposed and developed adaptive LQ receivers. Next, we proposed a simple, intuitively 
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appealing cost function that c an be maximized to find LQ receivers that are optimal in a 

certain sense. Finally, we discussed the properties of the proposed LQ cost function and 

derived an efficient adaptive algorithm by which the optimum LQ receiver and the 

corresponding optimal signal sets can be found simultaneously. In particular, this approach 

leads to a detector that is equivalent to the well-known MMSE linear detector if an antipodal 

signal structure is employed. 

2. Adaptive Multicoding In Chapter 5, we employed J-divergence as a distance 

measure criterion to develop a novel adaptive modulation scheme which we refer to as 

adaptive multicoding. We adapt the signal constellation by searching over the two-dimension 

signal subspace spanned by two known basis signatures. Performance evaluation based on 

simulation results for binary signals shows that the adaptive LQ detector outperforms the 

linear detector. This indicates not only that the J-divergence is a good criterion for signal 

selection for this problem, but also that the recursive LMS algorithm converges to a nearly 

optimal solution. Furthermore, the LQ detector becomes strictly better than the linear 

detector as the uncertainty on the channel increases at a fixed SNR. Finally, as the SNR on 

the channel increases, the level of uncertainty at which the LQ detector begins to 

significantly outperform the linear detector converges to zero. In addition, the analysis 

illustrates that the optimal signal pair varies between antipodal signals and orthogonal signals 

corresponding to coherent channels and noncoherent channels. 

3. Performance Analysis of LQ Receivers In Chapter 6, the Chemoff bound for the 

LQ receiver was derived for performance analysis since no closed form of probability of 

error can be obtained. The numerically computed Chemoff bound and other associated 

bounds were compared to the simulated probability of bit error of the LQ receiver. This 

analysis confirms that J-divergence is a reasonable approximation at low SNR but less 

appropriate at high SNR. 
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4. M-ary Signal Constellations In Chapter 7, we extended the approach developed in 

chapter 2 for binary signals to M-ary signals. In this scenario, the optimal detector consists of 

M-l LQ detectors. The optimal signal structure can be obtained by maximizing the minimum 
(M\ 

divergence distance between ^ ^ signal pairs in M-ary constellations. The simulation 

results for quaternary signals indicate that the adaptive scheme gives almost the same 

performance as QPSK does in a two-dimensional signal subspace for lower SNR. By further 

expanding the signal subspace to a higher dimensional subspace, the adaptive multicoding 

scheme overall outperforms QPSK. This indicates that adaptive multicoding can enhance the 

system performance through the dimension expansion of the signal subspace. 

8.2 Open Areas of Research 

During the course of this research, several aspects of adaptive LQ receivers became 

apparent which are worthy of further study. These are summarized below. 

1. Performance Evaluation of Binary LQ Receivers. A comprehensive 

performance evaluation of binary LQ receivers will be performed in order to extend and 

complete the preliminary results discussed above. Of particular interest will be the effect of 

MAI on the performance of the receivers and the determination of performance 

characteristics such as asymptotic multiuser efficiency and near-far resistance for the 

proposed class of LQ receivers. 

2. Receiver Sensitivity. The sensitivity of LQ receivers to estimates of channel 

statistics will be studied. Although it has been demonstrated that the proposed adaptive LQ 

receivers are much less sensitive to errors in instantaneous CSI estimates than linear MMSE 

receivers, the performance of LQ detectors in the presence of errors in estimates of channel 

covariance structure remains to be determined. Of particular interest will be errors in the 
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estimates of £e and ST, which will be the most difficult components of channel covariance 

structure to determine precisely. 

3. Adaptive Algorithms. The convergence properties of adaptive algorithms for LQ 

signal and receiver design will be studied. Adaptive algorithms based on RLS and subspace 

tracking methods will be investigated in addition to the LMS approach currently under study. 

4. Dimension Expansion Due to computational complexity, we only investigated 

expansion of the signal subspace to four dimensions with spreading gain 31. If faster 

adaptive algorithms become available, higher dimensionality and higher spreading gain will 

be simulated to determine the relationship to the theoretical analysis presented i n [44]. In 

addition, it is of interest to find the analytical proof that the maximin J-divergence increases 

with the increase of the signal dimensionality. 

5. Distance Criterion J-divergence is used as the distance criterion in this 

investigation due to its tractability. However, it is not closely correlated to probability of 

error at high SNR. Other distance criteria will be studied. Bhattacharyya distance would be a 

good candidate if a corresponding optimization scheme could be found. 
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Appendix A. J-divergence between Two Gaussian Distributions 

The problem of interest is (a') described in chapter 4. 

H0 :y - N(-|i,E0), 
verse 

*,:y-N(p,Z,). 

Under HQ : 

A>(y) = r rexP(-y(y+M)' £ô' (y+n)) 
(iny-1 l0 |5 

Under //, : 

p,(y) = r—rexP(-^(y -»*)' (y—*»)) 
(2/r)ME012 

First, compute Kullback-Leibler distancesKL(p0 ,p x)  and KL(p { ,p0)  

M(p0,Pl) = £„{logS^i 
A(y) 

Aa(p„p0)-£,{iog^52} 
A>(y) 

= -£,{log^2pl} 
My) 

^77=^-Texp(i(y-ii)'z:rl(y-i»)-^(y+/')' z;' (y+n)) 
p,(y) |£„l3 2 

£ 

I0g£»M = l0gL=LL+I(y_p)-j;- |(y_| l)_I(y  +  | ,)-j;-i(y+ | ,)) 

l=„l* 2 2 

H(A,,p,) = £0{logM2} 
A(y) 
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= E0{Tr( log^Zl} 
a (y) 

I 

= E0{rr(!ogl^-!l+i(y-|.)-Er,(y-|.)-l(y+|i)-E„-,(y+|i))} 

I Si F 2 2 

= log +\e 0 {Tr(Z;1 (y - |i)(y - |i)' - £ô' (y + H)(y +M)')} 
l=0l5 " 

I 

= log + ̂ -£0 (y + n- 2|t)(y +p- 2|t)* - (y + n)(y + |i)')} 
l=o I1 " 

= log+^E0{Tr(l.;1 (y + p)(y + ji)* -2|i"(y + n)-2p(y + |i)' + 4pp")-Z'0
X(y + p)(y + p)"} 

1=0 I5" " 

I 

= logiS-!L + i(rr(Sr'£. -0-0+4E;V-E,-'£„)) 

IS.Is " 
I 

- logiSJf+irKEr'S. +4Ef'W--I) 

IS.I' -

/a.(p„/>„)=-£,{ log-^M) 
A(y) 

= -£,{7,-(log ̂ 44} 
A(y) 

=-£l{rr(iogi^lL+l(y-lâ)-5:r1(y-ii)-^(y+ii),2ôl(y+ii))} 
i=o r ** 

= - log _ I £t {rr(L"' (y - n)(y - |i)* -1"1 (y + |»)(y + |i)*)} 
l=o I1 " 

I 

= - logl^L-^f, !rc(E"' (y - n)(y-p)'-S;'(y-p + 2|i)(y - |i + 2|i)' )} 

IS, F 2 
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I 

= - log -1 {7r(Z[' (y - n)(y - |i)' - E"1 ((y - p)(y - y)' + 2p' (y - |i)+2ji(y - n)' + 4pn' ))} 

I Sol" ** 
I 

= -logi^iil-i(7>(i:r,S1 -Z~Q% -0-0-4L-W')) 
i=o F " 

I 

=-!ogl^4--ln-(i-E;,E,-4E;>|V) 

IE, Is " 

= -logiSJl+irr(E0-'E, + 4E;V-I) 

IE, I5 -

J-divergence is the sum of two KL distances. 

J = KL{p0 ,P l)  +  KL(P l ,p0)  

= irr(E-'E, + 4E;W' -1 + E,-'E, +4I;W -1) 

= i(4|l-(E;'+Er,)|i + r/-(E0-'E1-1 +E,E,-' -21) 

= 2n'(E;' + Er,)n+lrKE;'E,-1 +E,E„-'-2l) 

This result coincides with Z)'(c0 ct) in (4.11) by a scaling factor 2. 
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Appendix B. The Gradient of D* (c0,c, ) 

Assume we have orthogonal matrix C ob and Cib as basis vectors, the define the global 

optimal vectors as: 

Coo = ro^Qb f\C\b 

where r0
2 + r,2 <1 

Cqi = '"ICQ» + r:P\b 

where r2
2 + r3

2 < 1 

or 
r* +r? <2 

Let 
C0p = zero(N + L,L +1); 

Clp = zeros(N + L,L +1); 

C0p=(l:L,:)=C0b{N + l:N + L,:) 

Clp(l:c,:) = Clb(V + l:M+L,:) 

C-10 ~ 'cl^op 

C-II = r2^0p ri^lp 

C0n = zeros{N + L,L +1) 

C,„ = zeros(N+L,L +1) 

C0n(N + L:N+Z,:) = C06(1 :Z,:) 

Cln(W + L:W+Z,:) = CI6(l:L,:) 

Qo ~ roPon 

Cii — ri^Qn "^'3 
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Figure out p,E„,E, 

c=|(C01-c„)ô 

=^[(i - 'i )C'û» +(n -i)C|,]â 

=C00EeC00 + E, +<T I 

=i = C01EeC01 +£, +<t I 
S«=/?E. 

s, =i«C.„ -C.,0]S„[C_„ -C.,„r +[C„-CI0]E„[C„-Cmn 

= "ro)C„, +(r,-i-,)C|,]S„[(r:-r„)C„, +(r,-ii)C„]' 

+[( '2  -n|)Q. +(r3 -l)C,JEa[(r2 -r0)C0/1 + (r3 -#i)C, J"} 

= ,^'{('*2 ~~ 2/2^ô + fo )C'op2«aC0p +('*2,3 —'il ~ r0 f i  'Ôl )Cop=aCQp 

C'a'3 — *21 ~ 'Ô'â +,Ô'î)Q/)=aQ)/> •^"('3 ~~ 1 )Cip£aCt/J 

(^2 — 2/"2^j + fQ )C0nLaC0n +('i'3 — ~,bf3 "*"'Ô't)Con=aCon 

+ (r,r3 — r2/*i -r0r3 +r0r1)ClflEaC0n* + (r3
2-2r3r1 + rl

2)C1„£ilC1„'} 

= ̂ {(r2 — 2/yj,+r0 )[C0pEaC0p +C0nEaC0n ] 

+ (r3"-2r3A;+r,')[Cl/,EaClp +CInE„C,„ ] 

+ (r2r3 —r2ri r0,3 +,ori)[C'op=aQp "^Qp=aQ)p + Q)„EaC,n 4" C,nEaC0n ] } 

So = /?(r0C06 +r1C16) + Ea(r0C06 +r,C16)*4-E, +<r2I 

= /*['*o Q,6E„C06 +r0^C06EttCI6 + ̂ C,6£aC06 +/] ClôEaClô ] + Et+o" I 
= AÔ P^Qb^aÇob +^01^[Q)6=aC|6 +C16EaC06 ] + /^ PClb2.aClb +2,4-0" l 

=i=>9(r2C06 +r3C16) + Ea(f2C06 4-r3Ct6)*4-£, +<r2I 

= /*2 /^0>6=a0)6 + ^Ib^aÇob ] + /3 P^lb^aÇxb +=,+0" I 
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Simplification: 

Let 
= PCobLaCob 

El ~ Pl^Qb^aÇxb 
+ClftEoC0ô ] 

= ^C16EaC16 

^ = Ç)p=aC06 +C0„EaC0n 

F'i=CQp'E,aCXp + CIpEaC0p +C0n2oC1(I +C1(1LlIC0n 

^3 = Qp^aÇp + Cl„£aC,<I 

then 

E0 = r0
2£, +r0r,£2 + r,2£3 +^[(r,2 -2/y*0 + r0

2)f; 

+ (r2r3 - r2/; - r0r3 + r0rx )F2 + (r3
2 - 2r3rç + r? )F} ] + cri 

L, = /2
2£, + r2r3£2+r3

2£3 +^-[(r2
2 -2r2r0 +r0

2)f; 

+ (^3 - ̂4 - ̂3 + W ) f l+( r: i2 - 2r3l + ̂  )^3] + (T2! 

figure out derivative of n,£0,L, 

ï-i« 

^-k.t 
? dr, 

| - ï «  

^a- = 2r0£, +r,£, +l[-2,-,f;+2r„f; -2r,F, +2r,F,] 

"7i = r0^'i +-r[Ei +7[-/2^Ï +ro^i *-2rî/^+2rlFî] 
ô/i 4 

^2- = i[2r2/| -2^ +r,f, -^] 
or, 4 
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(0>tj)-<z=rî 
(<t>z3)ji = 

(<I>i3)-tl=°> 

z/.(?9I3™>= 'w 

I/.(»90JY->= °" 

m 

fa>( z3 + z3z-»)Vi+q .(»"b y)i7= 

[o( l3 ̂  + 'jr^M+q .(?90o Y)i?= 

[O(£^^6 - V-<-)kz+q.(»vbY-)t=^ 

[o( V-*- 'J°-<c-)]-<Z+q.(?90D Y-^=^ 

[o(°3-'3)]-<z+q.iit7=cr 

(UMOXNI o'q) 'uonounj JSODjo aAiteAuap aqi puij 

zJ^Z+ z3°-*~ zJ z-<]j+ Z3 Î- 'Z+Z3Z J  = T^T 

[ZJ^~ z3^ +1i^Z~ 1^]^ + z3^+ X3z-*Z = 

[ E j ^ + -  V 0 '  +  y  ^ - ]  y =  

+ y ^ -  + x j z J - } y =  

ty ̂  +y0-/ - V^y=-Ô^ 

68 
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Then the gradients of D' (c0,c,) are as follows: 

3D _ 
T— = -2t0r0 -txrx +/i0 

ÔD 
~z - ~'iro -2^''t +«, 

3D . — = 2f0r, +f,r3 -zz0 

dD — = +2f4r3-/i, 
dr3 
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Appendix C. The Statistics of ISI Vector 

a). For Binary Signals: 

Assume transmitted signals are equiprobable a priori, 

i = S_,a_, +S+Ia+1 

= (6_,C_,i +(l-6_,)C_10)a„, +(l-6>1)C<.l0)a>1 

*00 

*01 =C_10
a-i + 

*10 =C_UŒ_| +C+10Œ+| 
*„ =C_,,a_1 +C+I1a+1 

l*i — •^"(C'_to®-i +C_,,ci_t +C+(0tt+l +C+11Œ+i) 

= ~((C_,o +C_lt)a_t + (C+10 +C+[t)a+l) 

* = *-!*, 

= (*-i -T)(C_u -C_l0)a_t +(6+l -T)(C+u -CttQ)o+l 

*' =(*-f*,)' 

= (£-1 -y)«-i(C_n -C_,0) + (6+1 -T)«+[(C+1i -C*l0) 

= - ^ ) 2 ( c -  „  - c  10)a.,a:t(c;n -c;10> 

~K^-t ~~)(C_u -C_l0)a_ta+l(C+11 -C+l0) 

+(^+i -yXQu -C+t0)o+ta_,(C_1I -C_I0) 

+(^+i ~^)2(Qii -Qt0)a+1o+I(C+n -C+l0) 
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(':3"3'"3+';3"3'-3)Y= 

((,îd"3,+D+i:Dd3i+O- ,;Dd3'"D)Y+ 

(1I3"3hO+ ':3°3I+3+ ,r^"3,"^+ ';D,,3,™3)y)Y = 

(r,3+r,3+r,3+"3)Y=13 

( '^"3'^+ 1;j"3'+3+ ] + .D J ' l i~D+ ]:D v1 l~D)^= "3 

I = H<? ' 1 = ,-Ç :t7 3SB3 

(':D"3,+3+ !;d"3,+D- ':J"3'D- ':3"3'J)y= p3 

0 = ' V ' I = '"<? :£3SB3 

0°3H3 + 1;3n3,+0- 'iD"3'"3- '7D"3'"D)Y= "3 

1= '*9 '0 = '"Ç :c 3SED 

C^3'^+ ':3"3"D+ l^"3,"^+ ';d"3'"3)Y= "3 

0 =  ' 0 =  '"9 :1 3SBD 

uaqi ' ol*j- = I+j) ' °'*j- u~j = '"J )3] pue UESUI OJSZ ipiM XJBUOUBJS SI » auinssn 'MOJM 

(o l*D- u*D)Vy l +*}3CuD-u +3)Y+ 

(01~d- u+d)y+ 

C'iJ- u*D)Vyx~*}3C l~D-u"3)y+ 

(01lJ-1{I;»,"»>5T ( 0I"O — "_3)Y= "3 

0= H<? '0= '"<? :I 9SB3 

36 
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Z, =H(C-u -C_,JE.(C_„ -c_I0)* +(C+Il -c+10)2:o(c+u 

Since a = â + e, and â and e are assumed uncorrected, then we have La = + Lc 

Therefore, the covariance matrix of the ISI vector has the form 

z, =H(C„-Cl0)(Ld +£c)(C „ -C_,0)* +(C+n -Q.oX^+^XQ,,-C>10)') 

b). For Quaternary Signals: 

Assume transmitted signals are equiprobable a priori, 

i =S_,a_, +S+ta+1 

= (6_,C_U +(l-6_,)C_m)a_, + (6+lC+u + (l-6+1)C+10)a+l 

s., - m».-')(»-

*00 = C io®-i : +^-+IO®+I 

*01 =c_ I0®-1 +C+lla+l 

*02 =c. 10®-l i +^+t2®+l 

*03 =c io®-i 1 •'"C+13®*! 

*10 =c !t®-I "t"C+l0®+t 

*n =c II®-! "<"^'+II®+I 
ll2 =c -tl®-l "*"^"•+12®+! 

1,3 =c + ̂ -"+t3®+l 

*20 =c -12®-

*21 =c -12®— I +^- + lt®+I 

*22 =c -12®-I +^- + t2®-t-l 

*23 =c -.2®-I +^-+I3®+l 
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*30 =C_13Œ_, +C+l0Œ+I 

*31 =C_13œ_, +C+lla+1 

*32  
=C_ 1 3 Œ_,  4 -C + 1 2 Œ + I  

*33 
=C_l3Œ_, 4-C+13Œ+l 

|I, = TT(*OO "*" *01 "*" *02 "*" *03 "*" *10 "*"*11 "*" *12 *13 "*"*20 "*" *21 "*" *22 "*" *23 "*" *30 "*" *31 "*" *32 *33) 
16 

= ̂ ((C_io +c-u +c-i2 +C_l3)a t +(C+10 +C+U + C,12 +Cl3)aJ 

= C_,Œ_, 4-C+)Œ+1 

Where  C_ ,  = i t c . 1 ;  ,C„  = j t c „ J  

4 y=o ^ y-o 

1=1-11, 

= (S_, +(SM -C+1)a+1 

*" =a_i"(S_I -C_,)+a+1'(S+I -C+I) 

L,=E{ i  V}  

= E{((S_, +(S+l -C>1)a+l)(a_,,(S„l -C.,)' +«+l'(S,1 -CM)')} 

Case 1: 6_, = 0, b+l = 0 

(C_l0 -C_ , )Z a (C_ x o -CJ  +(C_10 -C_,)Z.(C^. -c J  

+(C.,o -C+ 1)Ea(C_1 0  -€_,)• +(C+ 1 0  -C+ 1)Ea(C+ l 0-c+ ly 

Case 2: 6_, = 0, 6+I = 1 

(C_,0 -c_,)La(c„10 -C_,y +(C_10-c_,)i:a(c+u -c+t)-

+(C+U -C+1)£a(C.l0 -C.,)' +(C+11 -C+I)E„(C+U -C+l)* 

Case 3: b_x = 0, b^ =2 

(C_io -C_t)Ltt(C_10 -C_[)* +(C_I0 -C_,)Z.(C„2 -C+1)* 

+(c.I2 -c+t)L„(c_10 -c.,)* -kc+I2 -c+1)sa(c,l2 -c+ly 

Case 4: 6_, =0, b+l =3 
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(C_,o -C_t)Stt(C_I0-€_,)• +(C_10 —C_,)£tt(C+u -C+I)* 

+(C+,3 -C+l)L„(C_10 -C_,)' +(C+13 -C+I)Sa(C+I3 -C+l)* 

Case 5: 6_,=1, b+l - 0 

(c.„ -c.,)i:„(c„tl -c_,y +(c_„ -c_,)2:a(c+l0-c+iy 

+(C+10-C+l)La(C_u -C.,)' +(C+I0 -C+1)Ltt(C+I0 -C+l)* 

Case 6: b_x = 1, b+x = 1 

(c_tI -C_,)Z.(C_„ -c_,y +(C_„ -c_,)2:a(c+ll -cj 

+(C+U -CJE.(C_„ -c.,y +(C+U -C+l)Ea(C+II-CJ 

E, =|(((C„m -C.j)La(C_10 -C_,y +(C.„ -C„,)' 

+ (C_„-C_,)S„(C_„ -C.,)' +(C_„-C_,)L.(C_„-Cj) 

+ ((C+l0-C^)Stt(C+I0 -C+1) +(€_,, -C+l)£tt(C+ll -C>t) 

+ (C+12-C+l)La(C+l2 -C+Iy +(C+l3 -C+1)Ltt(C^13 -C+I)*)) 

Since a = à 4-E , and â and e are assumed uncorrected, then we have Lu = La + LE. 
Therefore, the covariance matrix of the ISI vector has the form 

E, =J«(C.,0-C„,)(£,+=„)(€„,, -£.,)• +(C.„ -C_,)(ES + E,)(C_„ -c_,)4 

+ (C_,, -C^XSj +S,)(C.,, -£„,)• +(C„I3 -C_,)(E, + E,)(C_„ -C,,)') 

+((C.,„ -C.,)(£a +E„)(C,I0 -C.,)' +(CM1 -C.,XE1+Ec)(C.ll -C.,)-

+(C„, -c„)(E6 +E.KC.,, -eHy +(C.„ -e„xs4+E.XC.,, -c.,)-)) 
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